Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 61(4): 875-883, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35201055

ABSTRACT

Two schemes for optical wireless modulation format recognition (MFR), based on the orthogonal-triangular decomposition (OTD) and Hough transform (HT) of the constellation diagrams, are proposed in this paper. Constellation diagrams are obtained at optical signal-to-noise ratios (OSNRs) ranging from 5 to 30 dB for seven different modulation formats (2/4/8/16-PSK and 8/16/32-QAM) as images. The first scheme depends on applying the HT of the obtained images; the second scheme is based on utilization of the decomposition of each of the obtained image matrices into an orthogonal matrix (Q) and an upper triangular matrix (R) followed by the HT. Different classifiers, including AlexNet, VGG16, and VGG19, are used for the MFR task. Model setups and results are provided to study the scheme efficiency at different levels of OSNR. The proposed schemes provide unique signatures for constellation diagrams. Moreover, it reveals that the main pattern corresponding to each constellation diagram is more distinguishable for both proposed schemes at different levels of OSNR. The obtained results achieve high accuracy at low OSNR values.

2.
Appl Opt ; 60(30): 9380-9389, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34807076

ABSTRACT

High-speed wireless communication is necessary in our personal lives, in both working and living spaces. This paper presents a scheme for wireless optical modulation format recognition (MFR) based on the Hough transform (HT). The HT is used to project constellation diagrams onto another space for efficient feature extraction. Constellation diagrams are obtained at optical signal-to-noise ratios (OSNR) ranging from 5 to 30 dB for eight different modulation formats (2/4/8/16 phase-shift keying and 8/16/32/64 QAM). Different classifiers are used for the task of MFR: AlexNet, VGG16, and VGG19. A study of the effect of varying the number of samples on the accuracy of the classifiers is provided for each modulation format. To evaluate the proposed scheme, the efficiency of the three classifiers is studied at different values of OSNR. The obtained results reveal that the proposed scheme succeeds in identifying the wireless optical modulation format blindly with a classification accuracy up to 100%, even at low OSNR values less than 10 dB.

3.
Appl Opt ; 60(13): 3677-3688, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33983300

ABSTRACT

Optical wireless communication (OWC) technology is one of several alternative technologies for addressing the radio frequency limitations for applications in both indoor and outdoor architectures. Indoor optical wireless systems suffer from noise and intersymbol interference (ISI). These degradations are produced by the wireless channel multipath effect, which causes data rate limitation and hence overall system performance degradation. On the other hand, outdoor OWC suffers from several physical impairments that affect transmission quality. Channel coding can play a vital role in the performance enhancement of OWC systems to ensure that data transmission is robust against channel impairments. In this paper, an efficient framework for OWC in developing African countries is introduced. It is suitable for OWC in both indoor and outdoor environments. The outdoor scenario will be suitable to wild areas in Africa. A detailed study of the system stages is presented to guarantee the suitable modulation, coding, equalization, and quality assessment scenarios for the OWC process, especially for tasks such as image and video communication. Hamming and low-density parity check coding techniques are utilized with an asymmetrically clipped DC-offset optical orthogonal frequency-division multiplexing (ADO-OFDM) scenario. The performance versus the complexity of both utilized techniques for channel coding is studied, and both coding techniques are compared at different coding rates. Another task studied in this paper is how to perform efficient adaptive channel estimation and hence equalization on the OWC systems to combat the effect of ISI. The proposed schemes for this task are based on the adaptive recursive least-squares (RLS) and the adaptive least mean squares (LMS) algorithms with activity detection guidance and tap decoupling techniques at the receiver side. These adaptive channel estimators are compared with the adaptive estimators based on the standard LMS and RLS algorithms. Moreover, this paper presents a new scenario for quality assessment of optical communication systems based on the regular transmission of images over the system and quality evaluation of these images at the receiver based on a trained convolutional neural network. The proposed OWC framework is very useful for developing countries in Africa due to its simplicity of implementation with high performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...