Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Vet Parasitol ; 329: 110211, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38772086

ABSTRACT

Ticks, particularly Rhipicephalus annulatus, pose significant threats to livestock, causing economic losses and transmitting various infectious diseases. This study aimed to evaluate the potential acaricidal properties of garlic oil and its nanoemulsion against ticks infesting cattle, Rhipicephalus annulatus through the evaluation of mortality rate and morphological changes of the treated ticks. The study also included prevalence, risk factors, and molecular confirmation of tick species. Genetic characterization confirmed the identity of R. annulatus. Our results revealed a high prevalence of R. annulatus (46.9%) with a higher risk in male cattle (50%) than females (44.9%) and a nonsignificant high infection (49.1%) in animals ≤ 1 year old. The acaricidal efficiency of garlic oil and its nanoemulsion was concentration and time-dependent. The high concentration of garlic oil (20 mg/L) induced complete mortality within 48 hours. The nanoemulsion formulation enhanced efficacy, particularly at 5 mg/L, which exhibited rapid and substantial acaricidal activity. Scanning electron microscopy revealed morphological alterations induced by garlic oil and its nanoemulsion, including changes to the anterior capitulum, dorsal, and ventral cuticles. The study contributes to the exploration of effective, safe, and eco-friendly alternatives for tick control. Further research is warranted to validate their efficacy under diverse conditions and assess practical strategies.

2.
BMC Complement Med Ther ; 24(1): 183, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704537

ABSTRACT

BACKGROUND: Highlighting affordable alternative crops that are rich in bioactive phytoconstituents is essential for advancing nutrition and ensuring food security. Amaranthus blitum L. (AB) stands out as one such crop with a traditional history of being used to treat intestinal disorders, roundworm infections, and hemorrhage. This study aimed to evaluate the anthelmintic and hematologic activities across various extracts of AB and investigate the phytoconstituents responsible for these activities. METHODS: In vitro anthelmintic activity against Trichinella spiralis was evaluated in terms of larval viability reduction. The anti-platelet activities were assessed based on the inhibitory effect against induced platelet aggregation. Further, effects on the extrinsic pathway, the intrinsic pathway, and the ultimate common stage of blood coagulation, were monitored through measuring blood coagulation parameters: prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin time (TT), respectively. The structures of isolated compounds were elucidated by spectroscopic analysis. RESULTS: Interestingly, a previously undescribed compound (19), N-(cis-p-coumaroyl)-ʟ-tryptophan, was isolated and identified along with 21 known compounds. Significant in vitro larvicidal activities were demonstrated by the investigated AB extracts at 1 mg/mL. Among tested compounds, compound 18 (rutin) displayed the highest larvicidal activity. Moreover, compounds 19 and 20 (N-(trans-p-coumaroyl)-ʟ-tryptophan) induced complete larval death within 48 h. The crude extract exhibited the minimal platelet aggregation of 43.42 ± 11.69%, compared with 76.22 ± 14.34% in the control plasma. Additionally, the crude extract and two compounds 19 and 20 significantly inhibited the extrinsic coagulation pathway. CONCLUSIONS: These findings extend awareness about the nutritional value of AB as a food, with thrombosis-preventing capabilities and introducing a promising source for new anthelmintic and anticoagulant agents.


Subject(s)
Amaranthus , Anthelmintics , Anticoagulants , Phytochemicals , Plant Extracts , Platelet Aggregation Inhibitors , Animals , Anthelmintics/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Anticoagulants/pharmacology , Larva/drug effects
3.
Microsc Res Tech ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430198

ABSTRACT

Trichinella spiralis infection is a food-borne zoonotic disease caused by nematodes that dwell in the tissues, presenting a significant public health concern. This study aimed to evaluate the effectiveness of different treatments including silver nanoparticles (AgNPs), myrrh biosynthesized AgNPs "AgNPs synthesized using plant-based green technologies", myrrh extract, and myrrh essential oil, as alternative treatments against T. spiralis infection. Parasitological, histopathological, and cytotoxicity assessments were conducted to investigate the effects of various concentrations of these treatments in reducing the populations of adult worms and larvae during both the intestinal and muscular phases of T. spiralis-infected mice. The results showed that the highest antihelminthic efficacy against the intestinal phase of T. spiralis was achieved by myrrh extract (86.66%), followed closely by AgNPs (84.96%) and myrrh AgNPs (82.51%) at higher concentrations (800 mg/kg for myrrh extract, 40 µg/mL for AgNPs, and 40 µg/mL for myrrh AgNPs). While the group treated with myrrh essential oil showed the lowest percentage of adult reduction (78.14%). However, all treatments demonstrated comparable effects in reducing the larvae population in the muscle phase. Histopathological examination of the tissues revealed compelling evidence of the effectiveness of AgNPs, particularly when prepared with myrrh. Additionally, a comprehensive assessment of the cytotoxicity of AgNPs indicated low toxicity levels. This study supports that AgNPs synthesized using plant-based green technologies hold therapeutic potential for the treatment of T. spiralis infection. These findings present a promising avenue for the development of novel antiparasitic drugs that are both effective and safe. RESEARCH HIGHLIGHTS: Myrrh extract has the highest antihelminthic efficacy against the intestinal phase of T. spiralis. Histopathological examination of the tissues revealed compelling evidence of the effectiveness of AgNPs, particularly when prepared with myrrh. During intestinal phase of T. spiralis, varying levels of nanoparticle precipitation were detected in the liver, brain, lung, and intestine. During the muscular phase, the highest amount of AgNPs precipitation was detected in the liver, followed by the brain, and lung.

4.
Int J Biol Macromol ; 261(Pt 2): 129842, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309386

ABSTRACT

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium with adaptive metabolic abilities. It can cause hospital-acquired infections with significant mortality rates, particularly in people with already existing medical conditions. Its ability to develop resistance to common antibiotics makes managing this type of infections very challenging. Furthermore, oxidative stress is a common consequence of bacterial infection and antibiotic therapy, due to formation of reactive oxygen species (ROS) during their mode of action. In this study we aimed to alleviate oxidative stress and enhance the antibacterial efficacy of ciprofloxacin (CPR) antibiotic by its co-encapsulation with naringin (NAR) within a polyelectrolyte complex (PEX). The PEX comprised of polycationic lactoferrin (LF) and polyanionic pectin (PEC). CPR/NAR-loaded PEX exhibited spherical shape with particle size of 237 ± 3.5 nm, negatively charged zeta potential (-23 ± 2.2 mV) and EE% of 61.2 ± 4.9 for CPR and 76.2 ± 3.4 % for NAR. The LF/PEC complex showed prolonged sequential release profile of CPR to limit bacterial expansion, followed by slow liberation of NAR, which mitigates excess ROS produced by CPR's mechanism of action without affecting its efficacy. Interestingly, this PEX demonstrated good hemocompatibility with no significant in vivo toxicity regarding hepatic and renal functions. In addition, infected mice administrated this nanoplatform intravenously exhibited significant CFU reduction in the lungs and kidneys, along with reduced immunoreactivity against myeloperoxidase. Moreover, this PEX was found to reduce the lungs´ oxidative stress via increasing both glutathione (GSH) and catalase (CAT) levels while lowering malondialdehyde (MDA). In conclusion, CPR/NAR-loaded PEX can offer a promising targeted lung delivery strategy while enhancing the therapeutic outcomes of CPR with reduced oxidative stress.


Subject(s)
Flavanones , Lactoferrin , Pectins , Humans , Mice , Animals , Lactoferrin/pharmacology , Lactoferrin/metabolism , Reactive Oxygen Species/metabolism , Pectins/pharmacology , Pectins/metabolism , Anti-Bacterial Agents/pharmacology , Oxidative Stress , Glutathione/metabolism , Ciprofloxacin/pharmacology , Lung/metabolism
5.
J Pharm Biomed Anal ; 236: 115722, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37742505

ABSTRACT

Several Amaranthus vegetables (Amaranthaceae) have been recognized as valuable sources of minerals, vitamins, proteins, and phytonutrients, with health-promoting characteristics. In this study, three edible Amaranthus species, namely A. hybridus (AH), A. blitum (AB), and A. caudatus (AC), were chemically characterized using non-targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique. Further, multivariate chemometric analyses were conducted, including principal component analysis (PCA) and correlation-covariance plot (C-C plot). As a result, forty-one diverse compounds were identified, which varied in distribution and abundance across the investigated species. Amino acids and flavonoid glycosides were the most prevalent metabolites. Other identified compounds comprised nucleoside, chlorogenic acids, hydroxy cinnamoyl amides, and triterpenoid saponins. The most discriminant metabolites were flavonoid glycosides and hydroxy cinnamoyl amides, giving each species a chemotaxonomic identity. Advancing the chemotaxonomy of Amaranthaceae, adenosine nucleoside and N-coumaroyl-ʟ-tryptophan were first reported from this family. Isorhamnetin and tricin glycosides were uniquely identified in AC, offering useful chemotaxonomic markers for this species. Notably, AB and AH profiles shared most metabolites, yet with varying abundance. These include adenosine, nicotiflorin, dicaffeoylquinic acids, and N-trans-feruloyl-4-O-methyldopamine. However, N-coumaroyl-ʟ-tryptophan and kaempferol dirhamnoside were exclusively found in AB, separating it from AH. In conclusion, the applied analytical techniques established molecular fingerprints for the included species, identified specific biomarkers, and investigated their interconnections.

6.
BMC Complement Med Ther ; 23(1): 214, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37391756

ABSTRACT

BACKGROUND: Cancer poses a health threat, with an increased incidence worldwide. Thus, it is essential to develop new natural anticancer agents. Dypsis pembana (H.E.Moore) Beentje & J.Dransf (DP) is an ornamental plant belonging to the family Arecaceae. This study aimed to isolate and identify phytoconstituents from the leaves of this plant and evaluate their in vitro cytotoxic activities. METHODS: Different chromatographic techniques were applied to fractionate the hydro-alcoholic extract of DP and separate the major phytoconstituents. The isolated compounds were structurally elucidated based on their physical and spectroscopic data. The in vitro cytotoxic activities of the crude extract and fractions thereof were evaluated against human colon carcinoma (HCT-116), human breast carcinoma (MCF-7), and human hepatocellular carcinoma (HepG-2) cell lines via MTT assay. Moreover, selected isolates were tested against HepG-2 cell line. Molecular docking analysis was performed to investigate the interactions of these compounds with two potential targets, the human topoisomerase IIα and cyclin-dependent kinase 2 enzymes. RESULTS: Thirteen diverse compounds were reported for the first time from DP, providing significant chemotaxonomic biomarkers. Among tested compounds, vicenin-II (7) was the most cytotoxic against HepG-2 cell line, with an IC50 value of 14.38 µg/mL, followed by isovitexin (13) (IC50 of 15.39 µg/mL). These experimental findings were complemented by molecular docking, which demonstrated that vicenin-II exhibited superior enzyme-binding affinities to the studied vital targets and shed light on the structure-activity relationships among the investigated flavone-C-glycosides members. CONCLUSION: The phytochemical profile of DP was characterized for the first time, reflecting chemotaxonomic data about the concerned species, genus, or even the family. Biological and computational findings revealed that vicenin-II and isovitexin are possible lead structures as inhibitors of the human topoisomerase IIα and cyclin-dependent kinase 2 enzymes.


Subject(s)
Antineoplastic Agents , Arecaceae , Flavones , Liver Neoplasms , Humans , Molecular Docking Simulation , Cyclin-Dependent Kinase 2 , Glycosides/pharmacology , Flavones/pharmacology , Antineoplastic Agents/pharmacology , Plant Leaves
7.
Nat Prod Res ; 36(24): 6267-6278, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35075960

ABSTRACT

Adenanthera pavonina L. has been used traditionally to relieve inflammation. This study aimed to expand the phytochemical knowledge of A. pavonina and evaluate its constituents for their antioxidant and anti-inflammatory potentials as tumor necrosis factor alpha (TNF-α) inhibitors. The antioxidant activity was evaluated using the DPPH radical scavenging assay, and the inhibition of TNF-α was assessed through ELISA and qRT-PCR techniques. Interestingly, five previously undescribed metabolites, including a pentadienoic acid derivative, a triterpenoid glycoside, and three tamarixetin glycosides, were identified alongside seven known compounds. Most compounds evaluated had higher DPPH radical scavenging capabilities than the standard, trolox. Tamarixetin 3-O-(α-ʟ-rhamnopyranosyl)-(1→2)-ß-ᴅ-galactopyranoside (11), a previously undescribed compound, was the most effective at suppressing TNF-α protein and m-RNA levels. Other flavonoid glycosides, quercetin 3-O-(α-ʟ-rhamnopyranosyl-(1→2)-ß-ᴅ-xylopyranoside (4), isovitixin (5), and quercetin-3-O-[α-ʟ-rhamnopyranosyl-(1→2)]-[α-ʟ-rhamnopyranosyl-(1→6)]-ß-ᴅ-galactopyranoside (9), also significantly lowered TNF-α production.


Subject(s)
Antioxidants , Fabaceae , Antioxidants/pharmacology , Antioxidants/chemistry , Quercetin , Tumor Necrosis Factor-alpha , Galactose , Fabaceae/chemistry , Glycosides/chemistry , Molecular Structure
8.
Ann Parasitol ; 67(4): 591-602, 2021.
Article in English | MEDLINE | ID: mdl-35247299

ABSTRACT

Trichinellosis is a serious worldwide parasitic zoonosis. The available therapy for the treatment of Trichinella spiralis is not satisfactory. Therefore, the recovery of effective treatment is required. This work aimed at evaluating of the in vitro effect of silver nanoparticles (AgNPs) on muscle larvae of Trichinella. The present study investigated the larvicidal properties of chemical and myrrh AgNPs on muscle larvae (ML) of T. spiralis. The used AgNPs were chemically prepared using NaBH4 as reducing agent and biosynthesized using methanolic myrrh extract. Characterization of synthesized AgNPs was monitored via UV-vis spectrophotometry, Fourier transform infrared spectroscopy and transmission electron microscopy (TEM) studies. The ML incubated with AgNPs at concentrations ranged from 1 µg/ml to 20 µg/ml. Chemical and biosynthesized AgNPs revealed marked larvicidal effect against ML of Trichinella. Additionally, this in vitro study showed degenerative changes affecting the cuticle of AgNPs treated ML. The effectiveness of AgNPs on the infectivity of Trichinella ML was also assessed. The results showed complete inhibition of the infectivity of ML exposed to sublethal doses of chemical and myrrh prepared AgNPs when used to infect animal models. This is the first report where myrrh synthesized AgNPs have been tested for their anthelminthic activity against Trichinella in an in vitro model.


Subject(s)
Insecticides , Metal Nanoparticles , Trichinella spiralis , Animals , Insecticides/analysis , Insecticides/chemistry , Insecticides/pharmacology , Larva , Metal Nanoparticles/chemistry , Muscles , Plant Extracts/pharmacology , Plant Leaves , Silver/analysis , Silver/chemistry , Silver/pharmacology
9.
Saudi Pharm J ; 28(4): 409-413, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32273799

ABSTRACT

Monoamine oxidase inhibition is an important therapeutic approach for various neurodegenerative disorders. Reversible MAO inhibitors selectively targeting only one isoform possess substantial merit in terms of safety, efficacy, and side effect profile. This study aimed to isolate the secondary metabolites of Zanthoxylum flavum stems and evaluate their recombinant human MAO inhibition, antimicrobial, and antiprotozoal activities. As a result, fourteen compounds were isolated and identified (nine of them were reported from Z. flavum for the first time). Compound 3 (sesamin) exhibited potent selective MAO-B inhibition (IC50 value of 1.45 ± 0.05 µM) which reported herein for the first time. Compound 2 showed selective MAO-A inhibition activity, compound 5 exhibited good trypanocidal activity, and compound 7 displayed moderate antibacterial activity. The promising MAO-B inhibitory activity of sesamin provoked us to further explore the kinetic properties, the binding mode, and the underlying mechanism of MAO-B inhibition by this lignan. This detailed investigation substantiated a reversible binding and mixed MAO-B catalytic function inhibition via sesamin (Ki: 0.473 ± 0.076 µM). Selectivity and reversibility of sesamin on MAO-B provide exciting prerequisites for further in vivo investigation to confirm its therapeutic potentiality.

10.
Phytochemistry ; 175: 112367, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32339958

ABSTRACT

Phytochemical investigation of the ethanolic extract of Glandularia x hybrida roots resulted in the isolation and identification of five previously undescribed saponins, 3-O-ß-ᴅ-xylopyranosyl-hederagenin-28-O-ß-ᴅ-glucopyranosyl (1→2)-O-ß-ᴅ-glucopyranosyl ester, 3-O-ß-ᴅ-xylopyranosyl-hederagenin-28-O-ß-ᴅ-glucopyranosyl (1→2)-[ß-ᴅ-glucopyranosyl (1→6)]-ß-ᴅ-glucopyranosyl ester, hederagenin-28-O-ß-ᴅ-glucopyranosyl (1→2)-[ß-ᴅ-glucopyranosyl (1→6)]-ß-ᴅ-glucopyranosyl ester, 23-O-acetyl-3-O-ß-ᴅ-xylopyranosyl-pomolic acid-28-O-ß-ᴅ-glucopyranosyl ester, and 23-O-acetyl-pomolic acid-3-O-ß-ᴅ-xylopyranoside, along with eleven structurally diverse compounds. The structural characterizations of the isolated compounds were determined using physical data, comprehensive 1D and 2D NMR spectral analysis, and HRESIMS. All isolated saponins are hederagenin or pomolic acid glycosides conjugated with differentiable sugar units bound to C-3 and/or C-28 of the aglycone through ether and/or ester glycosidic linkages, respectively. Structural diversity of these isolated secondary metabolites would have a great impact on the future chemosystematic studies of this plant. Four saponins, obtained in good yield were evaluated for their anti-inflammatory activities in a rat model using the carrageenan-induced paw edema protocol. Two of these exhibited significant anti-inflammatory activities demonstrated through inhibition of the paw edema by 64 and 60%.


Subject(s)
Saponins , Triterpenes , Verbenaceae , Animals , Glycosides , Magnetic Resonance Spectroscopy , Plant Roots , Rats
11.
Int J Med Microbiol ; 310(3): 151415, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32156509

ABSTRACT

Pseudomonas aeruginosa is an evolving pathogen which can cause serious infections especially to immunocompromised patients. Its high resistance profile to antibiotics results in difficulty, and sometimes impossibility, in treating afflicted patients. Developing an effective vaccine against P. aeruginosa is an important approach to tackle this problem. A similar problematic situation exists for Acinetobacter baumannii. Several vaccine candidates have been investigated up till now but still there is no approved vaccine in the market. One important antigen of P. aeruginosa is the outer membrane protein F (OprF) which functions as a porin with relevant important roles in virulence. Previous studies focused mainly on the C-terminal peptidoglycan binding domain of OprF as a vaccine candidate. In the current study, we have investigated the N-terminal porin domain of OprF as a potential vaccine candidate against P. aeruginosa. Histidine-tagged recombinant N-terminal OprF (amino acid range 25-200; OprF25-200) was overexpressed in Escherichia coli and purified using metal affinity chromatography. Swiss albino mice were immunized with OprF25-200 adjuvanted with Bacillus Calmette-Guérin (BCG) and alum and the immune response was evaluated. Immunized mice developed antigen-specific IgG1 and IgG2a and were protected against challenge by both P. aeruginosa and a clinical isolate of A. baumannii expressing OprF. Serum from OprF25-200-immunized mice showed cross-reactivity with both pathogens using western blotting and whole cell enzyme-linked immunosorbent assay (ELISA). To our knowledge, this is the first report to demonstrate that the N-terminal domain of OprF is sufficiently immunogenic to protect against the two pathogens.


Subject(s)
Acinetobacter Infections/prevention & control , Bacterial Proteins/immunology , Bacterial Vaccines/immunology , Cross Protection/immunology , Pseudomonas Infections/prevention & control , Acinetobacter Infections/microbiology , Acinetobacter baumannii , Adjuvants, Immunologic , Animals , Antibodies, Bacterial/blood , Bacterial Proteins/administration & dosage , Bacterial Vaccines/genetics , Escherichia coli , Female , Immunoglobulin G/blood , Mice , Pseudomonas aeruginosa , Vaccines, Synthetic/immunology
12.
Fitoterapia ; 110: 129-34, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26969788

ABSTRACT

A new cycloartane-type saponin with unusual hydroxylation at C-17 and a unique side chain, 9 (R), 19, 22 (S), 24 (R) bicyclolanost-3ß, 12α, 16ß, 17α tetrol-25-one 3-O-ß-d-glucopyranosyl-(1→2)-ß-d-glucopyranoside (1) and two new monoterpenoid glucoindole alkaloids, 10-methoxy pumiloside (2) and the previously chemically synthesized, 10-methoxy strictosidine (3) along with other five known compounds, 7α-morroniside (4), 7-epi-loganin (5), (7ß)-7-O-methylmorroniside (6), 5(S)-5-carboxystrictisidine (7) and apigenin-7-O-neohesperidoside (8) were isolated from the aerial parts of Mussaenda luteola (Rubiaceae). The structural elucidation of the isolates was accomplished by extensive (1D and 2D NMR) spectroscopic data analysis and HR-ESI-MS. Compounds 4-8 were reported for the first time from the genus Mussaenda. Interestingly, this is the first report for the occurrence of the monoterpenoid glucoindole-type alkaloids in the genus which might be useful for the chemotaxonomic evaluation of the genus Mussaenda. All isolates were evaluated for their antiprotozoal activities. Compound 7 showed good antitrypanosomal activity with IC50 and IC90 values of 13.7 and 16.6 µM compared to IC50 and IC90 values of 13.06 and 28.99 µM for the positive control DFMO, difluoromethylornithine.


Subject(s)
Alkaloids/chemistry , Antiprotozoal Agents/chemistry , Monoterpenes/chemistry , Rubiaceae/chemistry , Saponins/chemistry , Triterpenes/chemistry , Trypanosoma brucei brucei/drug effects , Alkaloids/isolation & purification , Antiprotozoal Agents/isolation & purification , Inhibitory Concentration 50 , Leishmania donovani/drug effects , Molecular Structure , Monoterpenes/isolation & purification , Saponins/isolation & purification , Triterpenes/isolation & purification
13.
Fitoterapia ; 107: 114-121, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26524249

ABSTRACT

Five new triterpenoid saponins, heinsiagenin A 3-O-[α-l-rhamnopyranosyl-(1→2)-ß-d-glucopyranosyl-(1→2)]-ß-d-glucopyranoside (1), heinsiagenin A 3-O-[α-l-rhamnopyranosyl-(1→2)-ß-d-glucopyranosyl-(1→2)]-[ß-d-glucopyranosyl-(1→4)]-ß-d-glucopyranoside (2), 2α-hydroxyheinsiagenin A 3-O-[α-l-rhamnopyranosyl-(1→2)-ß-d-glucopyranosyl-(1→2)]-ß-d-glucopyranoside (3), 2α-hydroxyheinsiagenin A 3-O-[ß-d-glucopyranosyl-(1→2)]-[ß-d-glucopyranosyl-(1→4)]-ß-d-glucopyranoside (4) and N-(2S, 3R, 4R-3-methyl-4-pentanolid-2-yl)-18-hydroxylanosta-8 (9), 22E, 24E-trien-27-amide-3-O-[α-l-rhamnopyranosyl-(1→2)-ß-d-glucopyranosyl-(1→2)]-[ß-d-glucopyranosyl-(1→4)]-ß-d-glucopyranoside (5) were isolated from the aerial parts of Mussaenda luteola Delile (Rubiaceae). Structural elucidation was based on the analysis of spectroscopic data (1D and 2D NMR) and HR-ESI-MS. Compound 1 showed potent antitrypanosomal activity with an IC50 value of 8.80µM. Compounds 2-4 showed highly potent antitrypanosomal activity with IC50 values ranging between (2.57-2.84µM) and IC90 values ranging between (3.36-4.35µM), which are 5 fold greater than the positive control DFMO (IC50 and IC90 values of 13.06 and 28.99µM, respectively). Compounds 1 and 2 showed moderate affinity to µ-opioid receptors with Ki values of 9.936µM and 0.872µM, respectively compared to a Ki value of 1.958nM for the positive control, naloxone HCl.


Subject(s)
Antiprotozoal Agents/chemistry , Rubiaceae/chemistry , Saponins/chemistry , Triterpenes/chemistry , Antiprotozoal Agents/isolation & purification , Leishmania donovani/drug effects , Molecular Structure , Plant Extracts/chemistry , Saponins/isolation & purification , Triterpenes/isolation & purification , Trypanosoma brucei brucei/drug effects
14.
Nat Prod Commun ; 10(11): 1897-900, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26749819

ABSTRACT

A new iridoid glucoside, 10-methoxy apodanthoside (1), and a new monoterpene glycoside, (3S,6S)-cis linalool-3,7-oxide O-ß-D-glucopyranosyl-(1"-->5')-ß-D- xylofuranoside (2), were isolated from V. edulis (Rubiaceae), along with eighteen known compounds (3-20), including monoterpenes, iridoid glycosides, and a lignin, which were encountered for the first time in the genus Vangueria,. The structural elucidation of the isolates was based on the analysis of spectroscopic (1D and 2D NMR) and HR-ESI-MS data. Detailed stereochemical studies of 1 and related iridoid glucosides (compounds 3, 4 and 8) were made by matching the calculated ECD peaks with the experimental ones. All isolates were tested for their antiprotozoal, antifungal, and antiplasmodial activities. Compounds 9, 15 and 16 showed good trypanocidal activities against Trypanosoma brucei brucei with IC50 values of 8.18, 9.02 and 7.80 µg/mL, respectively and IC90 values of > 10, > 10 and 9.76 µg/mL, respectively. Compound 16 showed a moderate activity against Candida glabrata with an IC50 value of 8.66 µg/mL. Compound 20 showed a weak antiplasmodial activity against chloroquine-sensitive (D6) and resistant (W2) Plasmodium falciparum with IC50 values of 3.29 (SI, > 1.4) and 4.53 (SI, > 1) µg/mL, respectively.


Subject(s)
Antiprotozoal Agents/pharmacology , Glycosides/pharmacology , Plant Extracts/pharmacology , Rubiaceae/chemistry , Antiprotozoal Agents/chemistry , Glycosides/chemistry , Molecular Structure , Plant Extracts/chemistry , Plasmodium falciparum/drug effects , Trypanosoma/drug effects
15.
Clin Biochem ; 47(1-2): 104-10, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24183881

ABSTRACT

OBJECTIVE: To develop a gold nanoparticle (AuNP) assay for direct detection of unamplified HURP RNA in urine. DESIGN AND METHODS: HURP RNA was extracted from urine samples (50 bladder carcinoma patients, 25 benign bladder lesions, and 25 controls) and further purified using magnetic nanoparticles (MNPs), functionalized with HURP RNA-specific oligonucleotides, and then detected by RT-PCR or gold nanoparticles. RESULTS: The developed HURP RNA AuNP assay has a sensitivity and a specificity of 88.5% and 94%, respectively, and a detection limit of 2.4 nmol/L. The concordance between the HURP AuNP assay with RT-PCR after RNA purification using functionalized MNPs was 97%. CONCLUSIONS: The developed colorimetric HURP RNA AuNP assay is sensitive, simple, and can aid noninvasive diagnosis of bladder cancer.


Subject(s)
Gold/chemistry , Metal Nanoparticles , Neoplasm Proteins/genetics , RNA/urine , Urinary Bladder Neoplasms/diagnosis , Adult , Aged , Female , Humans , Limit of Detection , Male , Middle Aged , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...