Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(23): 15575-15585, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37228682

ABSTRACT

The layered structures of tungsten disulfide (WS2) and molybdenum tungsten disulfide (MoWS2) are considered as the most promising electrode materials for energy storage devices. Herein, MS (magnetron sputtering) is required for the deposition of WS2 and MoWS2 on the surface of the current collector to attain an optimized layer thickness. The structural morphology and topological behavior of the sputtered material were examined via X-ray diffraction and atomic force microscopy. Three-electrode assembly was used to start the electrochemical investigations to identify the most optimal and effective sample among WS2 and MoWS2. CV (cyclic voltammetry), GCD (galvanostatic charging discharging), and EIS (electro-impedance spectroscopy) techniques were employed to analyze the samples. After preparing WS2 with optimized thickness as the superior performing sample, a hybrid device was designed as WS2//AC (activated carbon). With a remarkable cyclic stability of 97% after 3000 continuous cycles, the hybrid supercapacitor generated a maximum energy density (Es) value of 42.5 W h kg-1 and 4250 W kg-1 of power density (Ps). Besides, the capacitive and diffusive contribution during the charge-discharge process and b-values were calculated by Dunn's model, which lay in the 0.5-1.0 range and the fabricated WS2 hybrid device was found to have a hybrid nature. The outstanding outcomes of WS2//AC make it suitable for future energy storage applications.

2.
Front Bioeng Biotechnol ; 11: 1283898, 2023.
Article in English | MEDLINE | ID: mdl-38162186

ABSTRACT

Biogenic Zinc oxide (ZnO) nanoparticles (NPs) were synthesized from Celosia argentea (C. argentea) plant extract. Structural analysis confirms the successful synthesis of biogenic zinc oxide NPs from C. argentea extract. The biogenic ZnO NPs have an average particle size of 21.55 ± 4.73 nm, a semispherical shape, and a specific surface area of about 50 m2/g. The biogenic ZnO NPs have a powerful radical scavenging activity (Ic50 = 91.24 mg/ml) comparable to ascorbic acid (ASC) as a standard (Ic50 = 14.37 mg/ml). The antibacterial efficacy was tested against gram-positive and gram-negative bacteria using an agar disc diffusion method. Gram-positive strains with biogenic ZnO NPs have a greater bactericidal impact than gram-negative strains in a concentration-dependent manner. Anticancer activity against Liver hepatocellular cells (HepG2) and Human umbilical vein endothelial cells (HUVEC) was evaluated using a [3-(4,5-dimethylthiazol-2-yl)-2,5diphenyl tetrazolium bromide] (MTT) assay. The results reflect the concentration-dependent cytotoxic effect of biogenic ZnO NPs against HepG2 cells even at low concentrations (Ic50 = 49.45 µg/ml) compared with doxorubicin (Ic50 = 14.67 µg/ml) and C. argentea extract (Ic50 = 112.24 µg/ml). The cell cycle and gene expression were analyzed to determine the potential anticancer mechanism. The flow cytometric analysis of the cell cycle revealed that biogenic ZnO NPs induce oxidative stress that activates the apoptotic genes NF-κB, CY-C, and P53, leading to cell death. The Celosia argentea improved the antioxidant, antibacterial, and anticancer activities of ZnO NPs without altering their structural properties. The effect of green synthesis on the bioactivity of biogenic ZnO NPs in vivo is recommended for future work.

3.
Nanomaterials (Basel) ; 9(11)2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31718062

ABSTRACT

In the present work, we synthesized CoxZn1-xFe2O4 spinel ferrite nanoparticles (x= 0, 0.1, 0.2, 0.3 and 0.4) via the precipitation and hydrothermal-joint method. Structural parameters were cross-verified using X-ray powder diffraction (XRPD) and electron microscopy-based techniques. The magnetic parameters were determined by means of vibrating sample magnetometry. The as-synthesized CoxZn1-xFe2O4 nanoparticles exhibit high phase purity with a single-phase cubic spinel-type structure of Zn-ferrite. The microstructural parameters of the samples were estimated by XRD line profile analysis using the Williamson-Hall approach. The calculated grain sizes from XRPD analysis for the synthesized samples ranged from 8.3 to 11.4 nm. The electron microscopy analysis revealed that the constituents of all powder samples are spherical nanoparticles with proportions highly dependent on the Co doping ratio. The CoxZn1-xFe2O4 spinel ferrite system exhibits paramagnetic, superparamagnetic and weak ferromagnetic behavior at room temperature depending on the Co2+ doping ratio, while ferromagnetic ordering with a clear hysteresis loop is observed at low temperatures (5K). We concluded that replacing Zn2+ ions with Co2+ ions changes both the structural and magnetic properties of ZnFe2O4 nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...