Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropeptides ; 107: 102447, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38870753

ABSTRACT

Chronic stress caused by prolonged emotional pressure can lead to various physiological issues, including reproductive dysfunction. Although reproductive problems can also induce chronic stress, the impact of chronic stress-induced reproductive dysfunction remains contentious. This study investigates the effects of chronic unpredictable stress (CUS) on reproductive neuropeptides, sperm quality, and testicular morphology. Sixteen twelve-week-old Sprague Dawley rats were divided into two groups: a non-stress control group and a CUS-induced group. The CUS regimen involved various stressors over 28 days, with both groups undergoing behavioural assessments through sucrose-preference and forced-swim tests. Hypothalamic gene expression levels of CRH, PNX, GPR173, kisspeptin, GnRH, GnIH, and spexin neuropeptides were measured via qPCR, while plasma cortisol, luteinizing hormone (LH), and testosterone concentrations were quantified using ELISA. Seminal fluid and testis samples were collected for sperm analysis and histopathological evaluation, respectively. Results showed altered behaviours in CUS-induced rats, reflecting stress impacts. Hypothalamic corticotropin-releasing hormone (CRH) expression and plasma cortisol levels were significantly higher in CUS-induced rats compared to controls (p < 0.05). Conversely, phoenixin (PNX) expression decreased in the CUS group (p < 0.05), while kisspeptin, spexin, and gonadotropin-inhibitory hormone (GnIH) levels showed no significant differences between groups. Despite a significant increase in GnRH expression (p < 0.05), plasma LH and testosterone concentrations were significantly lower (p < 0.05) in CUS-induced rats. Histopathological analysis revealed abnormal testis morphology in CUS-induced rats, including disrupted architecture, visible interstitial spaces between seminiferous tubules, and absence of spermatogenesis. In conclusion, CUS affects reproductive function by modulating PNX and GnRH expression, influencing cortisol levels, and subsequently reducing plasma LH and testosterone concentrations. This study highlights the complex interplay between chronic stress and reproductive health, emphasizing the significant impact of stress on reproductive functions.

2.
Asian J Psychiatr ; 40: 76-81, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30771755

ABSTRACT

Transcription factor 4 (TCF4) gene plays an important role in nervous system development and it always associated with the risk of schizophrenia. Since miRNAs regulate targetgenes by binding to 3'UTRs of target mRNAs, the functional variants located in 3'UTR of TCF4 are highly suggested to affect the gene expressions in schizophrenia. To test the hypothesis regarding the effects of the variants located in 3'UTR of TCF4, we conducted an in silico analysis to identify the functional variants and their predicted functions. In this study, we sequenced the 3'UTR of TCF4 in 13 multiplex schizophrenia families and 14 control families. We found two functional variants carried by three unrelated patients. We determined that the C allele of rs1272363 and the TC insert of rs373174214 might suppress post- transcriptional expression. Secondly, we cloned the region that flanked these two variants into a dual luciferase reporter system and compared the luciferase activities between the pmirGLO-TCF4 (control), pmirGLO-TCF4-rs373174214 and pmirGLO-TCF4-rs1273263. Both pmirGLO-TCF4-rs373174214 and pmirGLO-TCF4-rs1273263 caused lower reporter gene activities, as compared to the control. However, only the C allele of rs1272363 reduced the luciferase activity significantly (p = 0.0231). Our results suggested that rs1273263 is a potential regulator of TCF4 expression, and might be associated with schizophrenia.


Subject(s)
3' Untranslated Regions/genetics , Gene Expression Regulation/genetics , Schizophrenia/genetics , Transcription Factor 4/genetics , Adult , Cell Line, Tumor , Female , Humans , Male , MicroRNAs/metabolism , Pedigree , Polymorphism, Single Nucleotide , RNA, Messenger/metabolism , Siblings
SELECTION OF CITATIONS
SEARCH DETAIL
...