Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Molecules ; 26(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208408

ABSTRACT

Essential oils have been widely used as an active ingredient in mosquito repellent products. However, essential oils are highly unstable and prone to degradation when exposed to the environment during storage. Microencapsulation techniques help to maintain the stability of molecules in essential oils that are sensitive to environmental stress, and therefore improve shelf life. In this study, the physical stability and efficacy of a repellent formulation consisting of encapsulated Citrus grandis essential oil (CGEO) were evaluated under different storage conditions over a 12-month period by comparing the formulation with a non-encapsulated formulation. The formulations were both stored under two different storage conditions, i.e., 25 ± 2 °C/60% ± 5% relative humidity (RH) and 40 ± 2 °C/75% RH ± 5%, for 12 months. Droplet size, zeta potential, and pH value were measured after 1, 6, and 12 months of storage to determine their stability. For the study of efficacy, each formulation was tested against Aedes aegypti under laboratory conditions. We found that the microencapsulated formulation's physical characteristics showed insignificant changes as compared with the non-encapsulated formulation during storage. The microencapsulated formulation demonstrated better repellent effects, sustaining high protection (>80%) for 4 more hours of exposure after 12 months of storage as compared with the non-encapsulated formulation that demonstrated high protection for only an hour post application. Microencapsulation helped to preserve the stability of the formulation, which resulted in high protection being maintained for over 12 months of storage.


Subject(s)
Aedes/drug effects , Citrus/chemistry , Insect Repellents/chemistry , Oils, Volatile/chemistry , Aedes/physiology , Animals , Drug Compounding , Drug Evaluation , Drug Stability
2.
Iran J Pharm Res ; 18(1): 198-209, 2019.
Article in English | MEDLINE | ID: mdl-31089355

ABSTRACT

Essential oil of Citrus family plant is known to have repellent effect against mosquito. Unfortunately, due to its high volatility effect, its repellency effect was compromised. The incorporation of essential oil in a microencapsulation formulation has been shown to help improve the stability and potency of the repellent. In this study, Citrus grandis peel oil (CGPO) was encapsulated by using the interfacial precipitation chemistry technique. The microencapsulated CGPO was then formulated into lotion form to produce topical repellent formulation. This study includes the characterization of microcapsules with regards to the morphology, size distribution, zeta potential, Fourier Transmission Infrared spectrophotometer (FTIR), and Thermogravity analysis (TGA). The effectiveness of the microencapsulated CGPO-lotion formulation against mosquitoes was evaluated in the laboratory setting. Results indicated that CGPO have been successfully encapsulated with 6.5 µm in diameter and zeta potential values, -47.9 mV. The FTIR analysis spectrum indicated the presence of interaction between the wall materials in microcapsules. The TGA analysis demonstrated that microencapsulation improved the thermal stability of CGPO. Repellency assay revealed that microencapsulated CGPO- based formulation possessed excellent effect compared with pure CGPO. In conclusion, CGPO was successfully encapsulated and the microencapsulation aid to improve the repellency effect of CGPO against mosquito bites.

3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-951259

ABSTRACT

Objective: To assess the insecticide susceptibility status of Anopheles cracens (An. cracens) and Anopheles maculatus (An. maculatus) from knowlesi malaria endemic areas in Peninsular Malaysia towards DDT, malathion and deltamethrin and to determine the resistance mechanism involved. Methods: Adult and larval mosquitos were collected for surveillance. Susceptibility status of Anopheles was determined using the standard WHO adult bioassay, larval bioassay and biochemical enzyme assay. Results: WHO adult bioassay results indicated An. cracens collected from Kampung Sungai Ular, Pahang was resistant towards 4% DDT, while An. maculatus collected from Kampung Sokor, Kelantan and Kampung Sungai Lui, Selangor exhibited resistance towards 4% DDT. However, the enzyme activity profiles varied according to strains and species. The resistance ratio of larval bioassay, showed that all strains and species tested were susceptible to malathion and temephos. Conclusions: Since only a few anopheline strains exhibited low level of insecticide resistance towards malathion, DDT and temephos. These insecticides are still considered effective for vector control program towards An. cracens and An. maculatus.

4.
BMC Complement Altern Med ; 15: 385, 2015 Oct 24.
Article in English | MEDLINE | ID: mdl-26497742

ABSTRACT

BACKGROUND: The threat posed by drug-resistant pathogens has resulted in the increasing momentum in research and development for effective alternative medications. The antioxidant and antibacterial properties of phytochemical extracts makes them attractive alternative complementary medicines. Therefore, this study evaluated the phytochemical constituents of Melaleuca cajuputi flower and leaf (GF and GL, respectively) extracts and their antioxidant and antibacterial activities. METHODS: Radical scavenging capacity of the extracts was estimated using 2,2-diphenyl-2-picrylhydrazyl and Fe(2+)-chelating activity. Total antioxidant activity was determined using ferric reducing antioxidant power assay. Well diffusion, minimum inhibitory concentration, and minimum bactericidal concentration assays were used to determine antibacterial activity against eight pathogens, namely Staphylococcus aureus, Escherichia coli, Bacillus cereus, Staphylococcus epidermidis, Salmonella typhimurium, Klebsiella pneumonia, Streptococcus pneumoniae, and Pasteurella multocida. We identified and quantified the phytochemical constituents in methanol extracts using liquid chromatography/mass spectrometry (LC/MS) and gas chromatography (GC)/MS. RESULTS: This study reports the antioxidant and radical scavenging activity of M. cajuputi methanolic extracts. The GF extract showed better efficacy than that of the GL extract. The total phenolic contents were higher in the flower extract than they were in the leaf extract (0.55 ± 0.05 and 0.37 ± 0.05 gallic acid equivalent per mg extract dry weight, respectively). As expected, the percentage radical inhibition by GF was higher than that by the GL extract (81 and 75 %, respectively). A similar trend was observed in Fe(2+)-chelating activity and ß-carotene bleaching tests. The antibacterial assay of the extracts revealed no inhibition zones with the Gram-negative bacteria tested. However, the extracts demonstrated activity against B. cereus, S. aureus, and S. epidermidis. CONCLUSIONS: In this study, we found that M. cajuputi extracts possess antioxidant and antibacterial activities. The results revealed that both extracts had significant antioxidant and free radical-scavenging activity. Both extracts had antibacterial activity against S. aureus, S. epidermidis, and B. cereus. The antioxidant and antimicrobial activities could be attributed to high flavonoid and phenolic contents identified using GC/MS and LC/MS. Therefore, M. cajuputi could be an excellent source for natural antioxidant and antibacterial agents for medical and nutraceutical applications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Bacteria/drug effects , Melaleuca/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Flowers/chemistry , Free Radicals/analysis , Iron/analysis , Microbial Sensitivity Tests , Plant Leaves/chemistry , Tea Tree Oil/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...