Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 8(2): e56553, 2013.
Article in English | MEDLINE | ID: mdl-23424667

ABSTRACT

BACKGROUND: IUGR increases the risk of type 2 diabetes mellitus (T2DM) in later life, due to reduced insulin sensitivity and impaired adaptation of insulin secretion. In IUGR rats, development of T2DM can be prevented by neonatal administration of the GLP-1 analogue exendin-4. We therefore investigated effects of neonatal exendin-4 administration on insulin action and ß-cell mass and function in the IUGR neonate in the sheep, a species with a more developed pancreas at birth. METHODS: Twin IUGR lambs were injected s.c. daily with vehicle (IUGR+Veh, n = 8) or exendin-4 (1 nmol.kg⁻¹, IUGR+Ex-4, n = 8), and singleton control lambs were injected with vehicle (CON, n = 7), from d 1 to 16 of age. Glucose-stimulated insulin secretion and insulin sensitivity were measured in vivo during treatment (d 12-14). Body composition, ß-cell mass and in vitro insulin secretion of isolated pancreatic islets were measured at d 16. PRINCIPAL FINDINGS: IUGR+Veh did not alter in vivo insulin secretion or insulin sensitivity or ß-cell mass, but increased glucose-stimulated insulin secretion in vitro. Exendin-4 treatment of the IUGR lamb impaired glucose tolerance in vivo, reflecting reduced insulin sensitivity, and normalised glucose-stimulated insulin secretion in vitro. Exendin-4 also reduced neonatal growth and visceral fat accumulation in IUGR lambs, known risk factors for later T2DM. CONCLUSIONS: Neonatal exendin-4 induces changes in IUGR lambs that might improve later insulin action. Whether these effects of exendin-4 lead to improved insulin action in adult life after IUGR in the sheep, as in the PR rat, requires further investigation.


Subject(s)
Adipose Tissue/drug effects , Fetal Development/drug effects , Fetal Growth Retardation/metabolism , Peptides/pharmacology , Sheep , Venoms/pharmacology , Adipose Tissue/metabolism , Animals , Animals, Newborn , Body Composition/drug effects , Body Size/drug effects , Cell Size/drug effects , Exenatide , Fetal Growth Retardation/physiopathology , Glucose Tolerance Test , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism
2.
Endocrinology ; 149(10): 5118-27, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18535100

ABSTRACT

Poor growth before birth increases the risk of non-insulin-dependent diabetes mellitus (NIDDM) and impairs insulin secretion relative to sensitivity. We investigated the effects of intrauterine growth restriction in sheep on insulin secretion, beta-cell mass, and function from before birth to young adulthood and its molecular basis. Pancreas was collected from control and placentally restricted sheep as fetuses (d 143 gestation), lambs (aged 42 d), and young adults (aged 556 d), following independent measures of in vivo insulin secretion and sensitivity. beta-Cells and islets were counted after immunohistochemical staining for insulin. In lambs, gene expression was measured by RT-PCR and expressed relative to 18S. beta-Cell mass correlated positively with fetal weight but negatively with birth weight in adult males. Glucose-stimulated insulin disposition and beta-cell function correlated negatively with fetal weight but positively with birth weight in adult males. Placental restriction increased pancreatic expression of IGF-II and IGF-I but decreased that of voltage-gated calcium channel, alpha1D subunit (CACNA1D) in lambs. In male lambs, pancreatic IGF-II and insulin receptor expression correlated strongly and positively with beta-cell mass and CACNA1D expression with glucose-stimulated insulin disposition. Restricted growth before birth in the sheep does not impair insulin secretion, relative to sensitivity, before birth or in young offspring. IGF-II and insulin receptor are implicated as key molecular regulators of beta-cell mass compensation, whereas impaired expression of the voltage-gated calcium channel may underlie impaired beta-cell function after intrauterine growth restriction. With aging, the insulin secretory capacity of the beta-cell is impaired in males, and their increases in beta-cell mass are inadequate to maintain adequate insulin secretion relative to sensitivity.


Subject(s)
Adaptation, Physiological/physiology , Fetal Growth Retardation/pathology , Fetal Growth Retardation/physiopathology , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/physiology , Animals , Birth Weight/physiology , Calcium Channels, L-Type/genetics , Cell Count , Female , Fetal Weight/physiology , Gene Expression/physiology , Gestational Age , Insulin/metabolism , Insulin Secretion , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor II/genetics , Male , Pregnancy , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...