Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Physiol ; 109(6): 966-979, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594909

ABSTRACT

The acute exudative phase of acute respiratory distress syndrome (ARDS), a severe form of respiratory failure, is characterized by alveolar damage, pulmonary oedema, and an exacerbated inflammatory response. There is no effective treatment for this condition, but based on the major contribution of inflammation, anti-inflammatory strategies have been evaluated in animal models and clinical trials, with conflicting results. In COVID-19 ARDS patients, interleukin (IL)-1 and IL-6 receptor antagonists (IL-1Ra and IL-6Ra, kineret and tocilizumab, respectively) have shown some efficacy. Moreover, we have previously developed novel peptides modulating IL-1R and IL-6R activity (rytvela and HSJ633, respectively) while preserving immune vigilance and cytoprotective pathways. We aimed to assess the efficacy of these novel IL-1Ra and IL-6Ra, compared to commercially available drugs (kineret, tocilizumab) during the exudative phase (day 7) of bleomycin-induced acute lung injury (ALI) in mice. Our results first showed that none of the IL-1Ra and IL-6Ra compounds attenuated bleomycin-induced weight loss and venous P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ increase. Histological analyses and lung water content measurements also showed that these drugs did not improve lung injury scores or pulmonary oedema, after the bleomycin challenge. Finally, IL-1Ra and IL-6Ra failed to alleviate the inflammatory status of the mice, as indicated by cytokine levels and alveolar neutrophil infiltration. Altogether, these results indicate a lack of beneficial effects of IL-1R and IL-6R antagonists on key parameters of ALI in the bleomycin mouse model.


Subject(s)
Acute Lung Injury , Antibodies, Monoclonal, Humanized , Disease Models, Animal , Receptors, Interleukin-6 , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Mice , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/metabolism , Male , Mice, Inbred C57BL , Interleukin 1 Receptor Antagonist Protein/pharmacology , Bleomycin , Lung/metabolism , Lung/drug effects
2.
Cell Commun Signal ; 21(1): 196, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37940970

ABSTRACT

The GPCR HCAR1 is known to be the sole receptor for lactate, which modulates its metabolic effects. Despite its significant role in many processes, mice deficient in HCAR1 exhibit no visible phenotype and are healthy and fertile. We performed transcriptomic analysis on HCAR1 deficient cells, in combination with lactate, to explore pathophysiologically altered processes. Processes such as immune regulation, various cancers, and neurodegenerative diseases were significantly enriched for HCAR1 transcriptomic signature. However, the most affected process of all was autism spectrum disorder. We performed behavioral tests on HCAR1 KO mice and observed that these mice manifest autistic-like behavior. Our data opens new avenues for research on HCAR1 and lactate effect at a pathological level. Video Abstract.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Mice , Animals , Lactic Acid/metabolism , Signal Transduction , Receptors, G-Protein-Coupled/metabolism
3.
Am J Physiol Cell Physiol ; 325(6): C1502-C1515, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37899751

ABSTRACT

G-coupled protein receptors (GPCRs) are the ultimate refuge of pharmacology and medicine as more than 40% of all marketed drugs are directly targeting these receptors. Through cell surface expression, they are at the forefront of cellular communication with the outside world. Metabolites among the conveyors of this communication are becoming more prominent with the recognition of them as ligands for GPCRs. HCAR1 is a GPCR conveyor of lactate. It is a class A GPCR coupled to Gαi which reduces cellular cAMP along with the downstream Gßγ signaling. It was first found to inhibit lipolysis, and lately has been implicated in diverse cellular processes, including neural activities, angiogenesis, inflammation, vision, cardiovascular function, stem cell proliferation, and involved in promoting pathogenesis for different conditions, such as cancer. Other than signaling from the plasma membrane, HCAR1 shows nuclear localization with different location-biased activities therein. Although different functions for HCAR1 are being discovered, its cell and molecular mechanisms are yet ill understood. Here, we provide a comprehensive review on HCAR1, which covers the literature on the subject, and discusses its importance and relevance in various biological phenomena.


Subject(s)
Biological Phenomena , Lactic Acid , Lactic Acid/metabolism , Signal Transduction , Receptors, G-Protein-Coupled/metabolism , Cell Membrane/metabolism
4.
Trends Endocrinol Metab ; 34(12): 786-788, 2023 12.
Article in English | MEDLINE | ID: mdl-37739879

ABSTRACT

Many metabolites possess covalent and noncovalent signaling functions. However, ongoing research considers them mostly as ligands, neglecting their potential involvement in post-translational modifications. In this forum article, we discuss the dual signaling functions of metabolites, using lactate as a case study, and advocate for the use of multiple complementary techniques to disentangle their functions.


Subject(s)
Lactic Acid , Signal Transduction , Humans , Protein Processing, Post-Translational
5.
Cells ; 11(14)2022 07 13.
Article in English | MEDLINE | ID: mdl-35883628

ABSTRACT

The GPCR SUCNR1/GPR91 exerts proangiogenesis upon stimulation with the Krebs cycle metabolite succinate. GPCR signaling depends on the surrounding environment and intracellular localization through location bias. Here, we show by microscopy and by cell fractionation that in neurons, SUCNR1 resides at the endoplasmic reticulum (ER), while being fully functional, as shown by calcium release and the induction of the expression of the proangiogenic gene for VEGFA. ER localization was found to depend upon N-glycosylation, particularly at position N8; the nonglycosylated mutant receptor localizes at the plasma membrane shuttled by RAB11. This SUCNR1 glycosylation is physiologically regulated, so that during hypoxic conditions, SUCNR1 is deglycosylated and relocates to the plasma membrane. Downstream signal transduction of SUCNR1 was found to activate the prostaglandin synthesis pathway through direct interaction with COX-2 at the ER; pharmacologic antagonism of the PGE2 EP4 receptor (localized at the nucleus) was found to prevent VEGFA expression. Concordantly, restoring the expression of SUCNR1 in the retina of SUCNR1-null mice renormalized vascularization; this effect is markedly diminished after transfection of the plasma membrane-localized SUCNR1 N8A mutant, emphasizing that ER localization of the succinate receptor is necessary for proper vascularization. These findings uncover an unprecedented physiologic process where GPCR resides at the ER for signaling function.


Subject(s)
Receptors, G-Protein-Coupled , Succinic Acid , Animals , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Hypoxia , Mice , Receptors, G-Protein-Coupled/metabolism , Succinates , Succinic Acid/metabolism
6.
Front Pharmacol ; 12: 803907, 2021.
Article in English | MEDLINE | ID: mdl-35046827
7.
iScience ; 23(10): 101643, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33103080

ABSTRACT

GPCRs are the largest receptor family that are involved in virtually all biological processes. Pharmacologically, they are highly druggable targets, as they cover more than 40% of all drugs in the market. Our knowledge of biased signaling provided insight into pharmacology vastly improving drug design to avoid unwanted effects and achieve higher efficacy and selectivity. However, yet another feature of GPCR biology is left largely unexplored, location bias. Recent developments in this field show promising avenues for evolution of new class of pharmaceuticals with greater potential for higher level of precision medicine. Further consideration and understanding of this phenomenon with deep biochemical and molecular insights would pave the road to success. In this review, we critically analyze this perspective and discuss new avenues of investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...