Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 19(10): 4079-87, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23224800

ABSTRACT

Properties of a new class of hypothetical high-surface-area porous carbons (open carbon frameworks) have been discussed. The limits of hydrogen adsorption in these carbon porous structures have been analyzed in terms of competition between increasing surface accessible for adsorption and the lowering energy of adsorption. From an analysis of an analytical model and simulations of adsorption the physical limits of hydrogen adsorption have been defined: (i) higher storage capacities in slit-shaped pores can be obtained by fragmentation/truncation of graphene sheets into nano-metric elements which creates surface areas in excess of 2600 m(2)/g, the surface area for infinite graphene sheets; (ii) the positive influence of increasing surface area is compensated by the decreasing energy of adsorption in the carbon scaffolds of nano-metric sizes; (iii) for open carbon frameworks (OCF) built from coronene and benzene molecules with surface areas 6500 m(2) g(-1), we find an impressive excess adsorption of 75-110 g H2/kg C at 77 K, and high storage capacity of 110-150 g H2/kg C at 77 K and 100 bar; (iv) the new OCF, if synthesized and optimized, could lead to required hydrogen storage capacity for mobile applications.

2.
J Am Chem Soc ; 134(36): 15130-7, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22897685

ABSTRACT

A class of high-surface-area carbon hypothetical structures has been investigated that goes beyond the traditional model of parallel graphene sheets hosting layers of physisorbed hydrogen in slit-shaped pores of variable width. The investigation focuses on structures with locally planar units (unbounded or bounded fragments of graphene sheets), and variable ratios of in-plane to edge atoms. Adsorption of molecular hydrogen on these structures was studied by performing grand canonical Monte Carlo simulations with appropriately chosen adsorbent-adsorbate interaction potentials. The interaction models were tested by comparing simulated adsorption isotherms with experimental isotherms on a high-performance activated carbon with well-defined pore structure (approximately bimodal pore-size distribution), and remarkable agreement between computed and experimental isotherms was obtained, both for gravimetric excess adsorption and for gravimetric storage capacity. From this analysis and the simulations performed on the new structures, a rich spectrum of relationships between structural characteristics of carbons and ensuing hydrogen adsorption (structure-function relationships) emerges: (i) Storage capacities higher than in slit-shaped pores can be obtained by fragmentation/truncation of graphene sheets, which creates surface areas exceeding of 2600 m(2)/g, the maximum surface area for infinite graphene sheets, carried mainly by edge sites; we call the resulting structures open carbon frameworks (OCF). (ii) For OCFs with a ratio of in-plane to edge sites ≈1 and surface areas 3800-6500 m(2)/g, we found record maximum excess adsorption of 75-85 g of H(2)/kg of C at 77 K and record storage capacity of 100-260 g of H(2)/kg of C at 77 K and 100 bar. (iii) The adsorption in structures having large specific surface area built from small polycyclic aromatic hydrocarbons cannot be further increased because their energy of adsorption is low. (iv) Additional increase of hydrogen uptake could potentially be achieved by chemical substitution and/or intercalation of OCF structures, in order to increase the energy of adsorption. We conclude that OCF structures, if synthesized, will give hydrogen uptake at the level required for mobile applications. The conclusions define the physical limits of hydrogen adsorption in carbon-based porous structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...