Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 446
Filter
1.
Heliyon ; 10(17): e37250, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39296217

ABSTRACT

Human health is being increasingly exposed to fluoride and nitrate ingestion globally due to anthropogenic alternations in groundwater resources. In the present research work, a hazard quotient (HQ), Monte Carlo simulation (MCS), and geographic information systems (GIS) have been used to estimate the non-carcinogenic health risk of nitrate and fluoride in vulnerable adults, teenagers, and children living in far-flung areas of Uttar Pradesh, Northern India. About 110 samples from some nearby populations were collected and analyzed for nitrates by ion chromatography and fluoride by a fluoride-selective electrode. The results indicated that the concentrations of fluoride and nitrate in the sampling areas ranged from 0.21 to 1.71 mg/L and 0.4-183.54 mg/L, respectively, with mean concentrations of about 1.20 mg/L and 51.52 mg/L for fluoride and nitrate, respectively. The results indicated that 27.27 % of the fluoride samples (27 out of 110) and 45.45 % of the nitrate samples (44 out of 110) were above the standard limits set by WHO. The calculated average HQ values fluoride and Nitrate for children, teenagers and adults were 1.88, 0.98, 0.90 and 3.02, 1.57, 1.45 respectively The 95th percentile HQ values for fluoride were 2.87 for children and 1.03 for adults, while those for nitrate were 4.10 for children and 1.98 for adults. Results of the health risk assessment show that there is a high potential for both non-carcinogenic and cancer risks from fluoride and nitrate through the consumption of groundwater. The Monte Carlo simulation showed the uncertainties and increased risks for children; therefore, one can infer that rural groundwater of the Mathura region, Uttar Pradesh, India, must be treated to make it potable for consumption.

2.
Bioimpacts ; 14(5): 27748, 2024.
Article in English | MEDLINE | ID: mdl-39296797

ABSTRACT

Introduction: Flexor tendon injuries are common and require surgery. Acellular dermal matrix (ADM) is a natural graft used to repair tissues, though infections represent the primary cause of its therapeutic failure. In this study, zinc oxide nanoparticles (ZnO-NPs) were coated on the ADM in order to add antibacterial potential as well as enhance healing properties. Also, the produced ADM/ZnO-NPs graft was applied to accelerate fifth zone flexor tendon repair following the reconstructive surgery. Methods: Morphological, mechanical, cell viability, and antibacterial tests were performed to evaluate the physical and biological properties of the fabricated ADM/ZnO-NPs graft. For clinical evaluations, 20 patients with a flexor tendon injury in zone 5 were randomly divided into control and treatment with ADM/ZnO-NPs groups (n=10 each). The control group had routine reconstructive surgery, while the other group received the ADM/ZnO- NPs graft during their surgery. Postoperative functional outcomes were evaluated 4, 6, and 8 weeks following the tendon repair surgery according to the Buck-Gramcko II criteria. Results: The ADM/ZnO-NPs had natural derm specifications as well as dense and integrated morphology with intermediate antibacterial properties. According to the Buck- Gramcko II criteria, the postoperative functional outcome scores were significantly higher in the ADM/ZnO-NPs group in comparison with the control group at 4 (P<0.01), 6 (P<0.01), and 8 (P<0.001) weeks after the surgery. Conclusion: The present findings revealed that the ADM/ZnO-NPs graft can accelerate the healing of the damaged tendon without common post-operative functional complications and adhesions following the tendon repair surgery. However, more comprehensive clinical trials are still needed.

3.
J Safety Res ; 90: 306-318, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39251287

ABSTRACT

INTRODUCTION: With cycling gaining more popularity in urban areas, it is vital to obtain accurate knowledge of cyclists' behavior to develop behavioral models that can predict the cyclist's intent. Most conflicts between cyclists and vehicles happen at crossings where the road users share the path, especially at unsignalized intersections. However, few studies have investigated and modeled the interaction between cyclists and vehicles at unsignalized intersections. METHOD: A bike simulator experiment was conducted to scrutinize cyclists' response process as they interacted with a passenger car at an unsignalized intersection. An existing unsignalized intersection in Gothenburg was simulated for test participants. Two independent variables were varied across trials: the difference in time to arrival at the intersection (DTA) and intersection visibility (IV). Subjective and quantitative data were analyzed to model the cyclists' behavior. RESULTS: When approaching the intersection, cyclists showed a clear sequence of actions (pedaling, braking, and head turning). The distance from the intersection at which cyclists started braking was significantly affected by the two independent variables. It was also found that DTA, looking duration, and pedaling behavior significantly affected cyclists' decisions to yield. Finally, the questionnaire outputs show that participants missed eye contact or communication with the motorized vehicle. CONCLUSIONS: The kinematic interaction between cyclists and vehicles, along with the cyclist's response process (visual and kinematic), can be utilized to predict cyclists' yielding decision at intersections. From the infrastructural perspective, enhancing visibility at intersections has the potential to reduce the severity of interactions between cyclists and vehicles. The analysis of the questionnaire emphasizes the significance of visual communication between cyclists and drivers to support the cyclist's decision-making process when yielding. PRACTICAL APPLICATIONS: The models can be used in threat assessment algorithms so that active safety systems and automated vehicles can react safely to the presence of cyclists in conflict scenarios.


Subject(s)
Bicycling , Computer Simulation , Humans , Male , Adult , Female , Motor Vehicles , Young Adult , Environment Design , Surveys and Questionnaires
4.
PLoS One ; 19(8): e0308599, 2024.
Article in English | MEDLINE | ID: mdl-39141643

ABSTRACT

Despite recent medical progress, cervical cancer remains a major global health concern for women. Current standard treatments have limitations such as non-specific toxicity that necessitate development of safer and more effective therapeutic strategies. This research evaluated the combinatorial effects of olive leaf extract (OLE), rich in anti-cancer polyphenols, and the oncolytic Newcastle disease virus (NDV) against human cervical cancer cells. OLE was efficiently encapsulated (>94% loading) within MF59 lipid nanoparticles and nanostructured lipid carriers (NLCs; contains Precirol as NLC-P, contains Lecithin as NLC-L) to enhance stability, bioavailability, and targeted delivery. Physicochemical analysis confirmed successful encapsulation of OLE within nanoparticles smaller than 150 nm. In vitro cytotoxicity assays demonstrated significantly higher toxicity of the OLE-loaded nanoparticle formulations on HeLa cancer cells versus HDF normal cells (P<0.05). MF59 achieved the highest encapsulation efficiency, while NLC-P had the best drug release profile. NDV selectively infected and killed HeLa cells versus HDF cells. Notably, combining NDV with OLE-loaded nanoparticles led to significantly enhanced synergistic cytotoxicity against cancer cells (P<0.05), with NLC-P (OLE) and NDV producing the strongest effects. Apoptosis and cell cycle analyses confirmed the increased anti-cancer activity of the combinatorial treatment, which induced cell cycle arrest. This study provides evidence that co-delivery of OLE-loaded lipid nanoparticles and NDV potentiates anti-cancer activity against cervical cancer cells in vitro through a synergistic mechanism, warranting further development as a promising alternative cervical cancer therapy.


Subject(s)
Nanoparticles , Newcastle disease virus , Olea , Plant Extracts , Plant Leaves , Uterine Cervical Neoplasms , Humans , Female , Plant Extracts/pharmacology , Plant Extracts/chemistry , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/pathology , HeLa Cells , Newcastle disease virus/drug effects , Plant Leaves/chemistry , Nanoparticles/chemistry , Olea/chemistry , Drug Carriers/chemistry , Lipids/chemistry , Drug Synergism , Apoptosis/drug effects , Liposomes
5.
Sci Rep ; 14(1): 17808, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39090195

ABSTRACT

Antimicrobial peptides, such as nisin, are proposed as promising agents for cancer treatment. While glycation has been recognized as an effective method for enhancing various physicochemical properties of nisin, its anticancer effects remain unexplored. Therefore, we aimed to assess the anticancer potential of glycated nisin against MDA-MB-231 cells. The MDA-MB cells were treated with increasing concentrations of nisin and glycated nisin for 24, 48, and 72 h. The IC50 values for nisin were higher than those for glycated nisin. Glycated nisin at concentrations of 20 and 40 µg/mL decreased cell viability more than nisin at the same concentrations. The rate of apoptosis in the group treated with 20 µg/mL of nisin was lower compared to other treatment groups, and no significant difference in apoptosis rates was observed at different time points (p > 0.05). However, in the glycated nisin groups with concentrations of 10, 20, and 40 µg/mL, the level of apoptosis was very high after 24 h (73-81% of cells undergoing apoptosis). Overall, our study suggests that glycated nisin exhibits stronger cytotoxic effects on MDA-MB-231 cells, primarily involving the induction of apoptosis. This indicates its potential utilization as an alternative approach to address the issue of drug resistance in cancer cells.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Survival , Nisin , Nisin/pharmacology , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Glycosylation/drug effects , Cell Survival/drug effects , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
6.
Heliyon ; 10(13): e33703, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39027555

ABSTRACT

Cancer, a prevalent disease across various societies, presents a significant challenge in treatment research. Studies show that combination therapies are one of the methods that can help in the effective treatment of cancer. Chemotherapy and radiation therapy are among the main cancer treatments and in this project, for combined chemoradiotherapy treatment, carbon nanotubes were used as improved carriers of chemotherapy in tumors, as well as a substrate for the preparation of radiation sensitizers for local radiation therapy. Following the synthesis of CNT-Platinum-Curcumin nanoparticles (CNT-Pt-CUR), a series of analyses were conducted to verify the successful production of these nanoparticles. Techniques such as Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), UV-Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) were employed. The characterization data revealed a spherical shape Pt nanoparticle morphology with an 8.5 nm diameter on rod-shape CNT, as observed through TEM. Furthermore, FTIR analysis confirmed the successful loaded of the drug into the nanoparticles, highlighting the potential of this approach in cancer treatment. Then, hemolysis and (3(-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tests on normal cells were used to assess the biocompatibility of CNT-Pt-CUR nanoparticles. It also explored the anticancer efficacy of these nanoparticles at varying concentrations against cancer cells, both with and without exposure to X-rays. The research confirmed the successful synthesis of these nanoparticles and demonstrated their potential impact on cell viability. Specifically, breast cancer cells exhibited heightened susceptibility to toxicity when exposed to nanoparticles and X-rays. Further analysis revealed that the toxicity of nanoparticles is dose-dependent, and modifying the surface of carbon nanotube (CNT) nanoparticles with CUR significantly reduced blood toxicity. Interestingly, nanoparticle toxicity was significantly amplified in the presence of X-rays, suggesting mechanisms such as DNA damage and increased reactive oxygen species (ROS) levels within cells.

7.
Ann Biomed Eng ; 52(9): 2521-2533, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38902468

ABSTRACT

In order to improve the ability of clinical diagnosis to differentiate articular cartilage (AC) injury of different origins, this study explores the sensitivity of mid-infrared (MIR) spectroscopy for detecting structural, compositional, and functional changes in AC resulting from two injury types. Three grooves (two in parallel in the palmar-dorsal direction and one in the mediolateral direction) were made via arthrotomy in the AC of the radial facet of the third carpal bone (middle carpal joint) and of the intermediate carpal bone (the radiocarpal joint) of nine healthy adult female Shetland ponies (age = 6.8 ± 2.6 years; range 4-13 years) using blunt and sharp tools. The defects were randomly assigned to each of the two joints. Ponies underwent a 3-week box rest followed by 8 weeks of treadmill training and 26 weeks of free pasture exercise before being euthanized for osteochondral sample collection. The osteochondral samples underwent biomechanical indentation testing, followed by MIR spectroscopic assessment. Digital densitometry was conducted afterward to estimate the tissue's proteoglycan (PG) content. Subsequently, machine learning models were developed to classify the samples to estimate their biomechanical properties and PG content based on the MIR spectra according to injury type. Results show that MIR is able to discriminate healthy from injured AC (91%) and between injury types (88%). The method can also estimate AC properties with relatively low error (thickness = 12.7% mm, equilibrium modulus = 10.7% MPa, instantaneous modulus = 11.8% MPa). These findings demonstrate the potential of MIR spectroscopy as a tool for assessment of AC integrity changes that result from injury.


Subject(s)
Cartilage, Articular , Spectrophotometry, Infrared , Female , Cartilage, Articular/injuries , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/metabolism , Animals , Horses , Spectrophotometry, Infrared/methods , Machine Learning , Proteoglycans/metabolism
8.
Iran J Biotechnol ; 22(1): e3629, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38827339

ABSTRACT

Background: The use of nanomaterial-based radiosensitizers to improve the therapeutic ratio has gained attraction in radiotherapy. Increased radiotoxicity applied to the tumor region may result in adverse impact on the unexposed normal cells to the radiation, a phenomenon known as radiation-induced bystander effect (RIBE). Objectives: This study aimed to investigate the effect of Bi2S3@BSA nanoparticles (NPs) as radiosensitizers on the enhancement of bystander response in non-irradiated cells. Materials and Methods: Lung carcinoma epithelial cells were exposed to 6 MV x-ray photons at different doses of 2 and 8 Gy, with and without Bi2S3@BSA NPs. The irradiated-cell's conditioned medium (ICCM) was collected and incubated with MCR-5 human fetal lung fibroblasts. Results: This study showed that ICCM collected from 2-Gy-irradiated A549 cells in the presence of Bi2S3@BSA NPs reduced the cell viability of MCR-5 bystander cells more than ICCM collected from irradiated cells without NPs (P<0.05), whereas such a difference was not observed after 8-Gy radiation. The mRNA expression of the BAX and XPA genes, as well as the cell death rate in MCR-5 bystander cells, revealed that the Bi2S3@BSA NPs significantly improved bystander response at 2-Gy (P<0.05), but the efficacy was not statistically significant after 8-Gy Irradiation. Conclusion: The results indicated that the presence of NPs did not affect bystander response enhancement at higher concentrations. These findings highlighted the potential use of radiation-enhancing agents and their benefits in radiotherapy techniques with high doses per fraction.

9.
Sci Rep ; 14(1): 13299, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858410

ABSTRACT

Radiation therapy and phototherapy are commonly used cancer treatments that offer advantages such as a low risk of adverse effects and the ability to target cancer cells while sparing healthy tissue. A promising strategy for cancer treatment involves using nanoparticles (NPs) in combination with radiation and photothermal therapy to target cancer cells and improve treatment efficacy. The synthesis of gold NPs (AuNPs) for use in biomedical applications has traditionally involved toxic reducing agents. Here we harnessed dopamine (DA)-conjugated alginate (Alg) for the facile and green synthesis of Au NPs (Au@Alg-DA NPs). Alg-DA conjugate reduced Au ions, simultaneously stabilized the resulting AuNPs, and prevented aggregation, resulting in particles with a narrow size distribution and improved stability. Injectable Au@Alg-DA NPs significantly promoted ROS generation in 4T1 breast cancer cells when exposed to X-rays. In addition, their administration raised the temperature under a light excitation of 808 nm, thus helping to destroy cancer cells more effectively. Importantly, no substantial cytotoxicity was detected in our Au@Alg-DA NPs. Taken together, our work provides a promising route to obtain an injectable combined radio enhancer and photothermally active nanosystem for further potential clinic translation.


Subject(s)
Alginates , Breast Neoplasms , Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Alginates/chemistry , Breast Neoplasms/radiotherapy , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Cell Line, Tumor , Animals , Mice , Photothermal Therapy/methods , Phototherapy/methods , Humans , Reactive Oxygen Species/metabolism , Dopamine/chemistry , Cell Survival/drug effects , Cell Survival/radiation effects
10.
Vector Borne Zoonotic Dis ; 24(8): 489-498, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38775074

ABSTRACT

Background: The control and prevention of rodent-borne diseases are mainly based on our knowledge of ecology and the infectious status of their reservoir hosts. This study aimed to evaluate the prevalence of Francisella tularensis, Yersinia pestis, and arenavirus infections in small mammals and to assess the potential of disease occurrence in East Azerbaijan, northwest of Iran, in 2017 and 2018. Methods: Spleen and lung samples were obtained from all trapped small mammals. The real-time quantitative PCR (qPCR) method was used to detect nucleic acid sequences of F. tularensis, Y. pestis, and arenaviruses. Serum samples were tested for antibodies indicating the host response to F. tularensis and Y. pestis infections using the standard tube agglutination test and enzyme-linked immunosorbent assay (ELISA), respectively. Results: A total of 205 rodents, four Eulipotyphla, and one carnivore were captured. The most common rodent species captured (123 of 205 rodents, 60%) belonged to the genus Meriones (mainly Persian jird, Meriones persicus). In total, 317 fleas were removed from trapped animals. Flea species belonged to Xenopsylla buxtoni, Xenopsylla nuttalli, Stenoponia tripectinata, Paraceras melis, Ctenophthalmus rettigi smiti, Rhadinopsylla bivirgis, Paradoxopsyllus grenieri, and Nosopsyllus iranus. Using the qPCR tests, five spleen samples from M. persicus were positive for F. tularensis. The qPCR tests were negative for the detection of Y. pestis and arenaviruses. Finally, all serum samples tested were negative for antibodies against Y. pestis and F. tularensis. Conclusions: F. tularensis was the only zoonotic agent detected in rodents captured in East Azerbaijan. However, the diversity of trapped rodents and fleas provides the potential for the spread of various rodent-borne viral and bacterial diseases in the studied areas.


Subject(s)
Arenaviridae Infections , Francisella tularensis , Plague , Rodentia , Tularemia , Yersinia pestis , Animals , Iran/epidemiology , Yersinia pestis/isolation & purification , Yersinia pestis/genetics , Tularemia/epidemiology , Tularemia/veterinary , Plague/epidemiology , Plague/veterinary , Francisella tularensis/isolation & purification , Francisella tularensis/genetics , Arenaviridae Infections/epidemiology , Arenaviridae Infections/veterinary , Rodent Diseases/epidemiology , Rodent Diseases/virology , Rodent Diseases/microbiology
11.
Res Vet Sci ; 174: 105293, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754221

ABSTRACT

Recently, several attempts have been made to replace egg-based with cell-based vaccines to prevent and control Infectious Bursal Disease Virus (IBDV). This study aimed to evaluate a new fish cell line (M99) for culturing and replicating IBDV. After observing complete cytopathic effects (CPE) on the M99 cell line, virus titers were determined using the TCID50 test, and the presence of the virus was confirmed using an RT-PCR test. Subsequently, 135 broiler chickens (14 days old) were randomly divided into three equal groups for immune response measurements: G1: immunized with a commercial vaccine, G2: immunized with an experimental vaccine, and G3: control. Antibody responses, bursal index, and histopathological evaluations were examined on different days after immunization. Based on the results, CPE of the virus was noticeable from the first passage, becoming complete by the third passage. The infectious titer of the virus was log106.9. Antibody titer measured 21 days after immunization in both vaccinated groups were significantly differed from the control group (p < 0.05). The results obtained from examining the bursal index and histopathological evaluations showed no significant difference between the studied groups at different times. Overall, this research is the first report on the successful cultivation of infectious bursal virus on a permanent cell line of fish origin, with the advantages of tolerance to a wide temperature range (26-40 degrees Celsius). Therefore, this cell line has potential for use to attenuate, cultivate, and adapt other pathogens to cold temperatures in future studies.


Subject(s)
Birnaviridae Infections , Chickens , Infectious bursal disease virus , Poultry Diseases , Viral Vaccines , Virus Replication , Infectious bursal disease virus/immunology , Animals , Viral Vaccines/immunology , Chickens/virology , Birnaviridae Infections/veterinary , Birnaviridae Infections/virology , Birnaviridae Infections/prevention & control , Birnaviridae Infections/immunology , Cell Line , Poultry Diseases/virology , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Fishes/virology
12.
Heliyon ; 10(7): e27900, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38571664

ABSTRACT

Cardiovascular (CVD) + Respiratory diseases are recognized as the main cause of death worldwide. Fluctuations in temperature and air pollution have been reported as one of the most important causes of cardiovascular & respiratory diseases. Therefore, in the current study, we assessed the relationship between ambient air temperature and pollution on the number of total emergency hospital admission due to cardiovascular and respiratory conditions in the City of Bojnord, northeastern Iran. The meteorological data, including daily temperature, relative humidity and concentrations of five air pollutants CO, NO2, NOX SO2, and PM10 were obtained from online electronic sensors at the Bojnurd meteorological station from 21th March 2018 to 20th March 2020. Statistical analysis, penalized distributed lag non-linear method was applied using R Software. Also, sensitivity analysis test was calculated by using appropriate application. The results of the study revealed that the effect of higher and lower temperatures was observed immediately from the first day and the second week, respectively. Also result showed with increase and decrease temperature, significantly increased the risk of hospitalization by 36% (RR, 1.36; 95% CI (1), 0.95 to 1.95) and 17% (RR, 1.17; 95% CI (1), 0.88 to 1.55) until the lag 25th day, respectively. Based on the results, increasing temperature significantly increased the hospitalization rate of cardiopulmonary patients, but the effect of cold was not significant on the population as well as age and gender subgroups. Study have also proved that there is no significance correlation between air pollutant and Cardiovascular & respiratory diseases.

13.
One Health ; 18: 100708, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38496338

ABSTRACT

Rodents are known reservoirs for a diverse group of zoonotic pathogens that can pose a threat to human health. Therefore, it is crucial to investigate these pathogens to institute prevention and control measures. To achieve this, the current study was conducted to investigate the frequency of different parasites in commensal rodents in Qatar. A total of 148 rodents, including Rattus norvegicus, Rattus rattus, and Mus musculus were captured using traps placed in different habitats such as agricultural and livestock farms, residential areas, and other localities. Blood, feces, ectoparasite, and visceral organs were collected for gross, microscopic, immunological, and molecular analysis. The study identified 10 different parasites, including Capillaria annulosa, Eimeria spp., Giardia spp., Hymenolepis diminuta, Mastophorus muris, Ornithonyssus bacoti, Taenia taeniaeformis, Toxoplasma gondii, Trypanosoma lewisi, and Xenopsylla astia. Overall, 62.2% of the rodents tested positive for at least one parasite species. Helminths were found to be the most prevalent parasites (46.0%), followed by ectoparasites (31.8%), and protozoa (10.1%). However, individually, X. astia was the most prevalent (31.8%), whereas C. annulosa was the least common (0.7%). The prevalence of X. astia and H. diminuta significantly differed between habitats (p < 0.05). The sequence analysis of Hymenolepis spp. was closely related to the previously reported H. diminuta in Iran, China, and Mexico. In conclusion, the study identified a diverse range of rodent-borne parasites that are important to public health, with most of them being recorded for the first time among commensal rodents in Qatar.

14.
Langmuir ; 40(12): 6149-6162, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38478980

ABSTRACT

The electric double layer at the liposome vesicle membrane has been investigated by a modified fundamental-measure theory in the framework of the restricted primitive model. An analytical equation has been obtained for the mean electrostatic potential (MEP) by solving Poisson's equation for curved membranes. This study investigates the influence of vesicle size, membrane thickness, surface charges, and electrolyte concentration on the structure, composition, and width of electric double layers (EDLs) on the inner and outer membrane walls. Our findings indicate that a thin and denser layer of ions is formed at the concave wall of the membrane (inner wall) compared to that at the outer membrane. As expected, the width of the diffuse layer decreases with the concentration and surface charge. Also, when the surface charges on both concave and convex walls are the same, the absolute value of MEPs on the inner membrane, concave wall, is greater than that on the convex wall. We have also investigated the diffuse potential, which decreases with concentration, membrane thickness, and cavity size, whereas it increases with surface charges. As we expect, the contact density of counterions at the inner concave wall of the vesicle cavity is always greater than the corresponding value at the convex wall, whereas this trend reverses for co-ions. Also, the contact density of counterions (co-ions) at the inner wall decreases (increases) with cavity size, whereas it increases at the outer wall (decreases). Finally, depletion of co-ions occurs at the membrane walls with enhancement in surface charges.

15.
BMC Med Educ ; 24(1): 325, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519931

ABSTRACT

BACKGROUND: "Student engagement" (SE) is gaining momentum as an approach to improve the performance of health professions education (HPE). Nevertheless, despite the broad studies about the role of students in various areas, little is known about the role of SE in policy and decision-making activities. This study aimed to map SE in policy and decision-making regarding terms and definitions, engagement models, influencing factors, outcomes and achievements, and the interconnection between the influencing factors. METHOD: Five databases (PubMed, Scopus, ProQuest, Web of Science, and ERIC) were systematically searched from Jan 1, 1990, to Nov 12, 2022. The review was followed according to the Arksey and O'Malley framework for scoping reviews and reported according to the PRISMA-ScR guidelines. We included articles published in English focusing on HPE policy and decision-making. The authors summarized and synthesized the findings into themes, subthemes, tables, and models. RESULTS: Of the 22 articles included in the full-text review, terms and definitions were tabled, and three themes were extracted: 1. models of SE, in which 10 studies (45.5%) presented the highly structured formal models as Organizations, 5 studies (22.7%) reported less-structured community and group as Programs, and 7 studies (31.8%) engaged students only in surveys or interviews as Perspective; 2. Factors influencing SE, that were categorized into 7 subthemes: structural, environmental, and motivational factors, member characteristics, training and mentoring, member relationships, valuing and recognizing. 3. Outcomes and achievements of SE related to systems and members. The interconnection between influencing factors is also demonstrated as a conceptual model. DISCUSSION: There are various SE models in HPE policy and decision-making, which are mapped and categorized depending on the degree of formality, structuredness, and level of engagement. In our study, three more common SE models in HPE policy and decision-making were investigated. Additionally, these collaborative methods emphasized curriculum development and quality assurance and employed students in these activities. It is worth mentioning that to make SE models more efficient and sustainable, several influencing factors and their interconnections should be considered.


Subject(s)
Decision Making , Health Occupations , Humans , Health Occupations/education , Students, Health Occupations/psychology
16.
Pest Manag Sci ; 80(7): 3478-3490, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38426586

ABSTRACT

BACKGROUND: The widespread use of chemical herbicides and the growing issue of weed resistance pose significant challenges in agriculture. To address these problems, there is a pressing need to develop biological herbicides based on bacterial metabolites. RESULTS: In this study, we investigated the impact of the cell-free culture filtrate (CFCF) from the ZT isolate, a bacilliform bacterium obtained from diseased wheat seeds, on the germination and seedling growth of various plant species, including wild oat, ryegrass, redroot, wheat, and chickpea. The results revealed that CFCF had a detrimental effect on the fresh and dry weight of stems and roots in most of the studied plants, except chickpeas. The CFCF was further subjected to separation into aqueous and organic phases using chloroform, followed by the division of the aqueous phase into 13 fractions using an alumina column. Notably, both the aqueous phase (20%) and all 13 fractions (ranging from 50% to 83%) displayed the ability to reduce the root length of ryegrass, a monocotyledonous weed. Liquid chromatography-mass spectrometry (LC-MS) analysis identified that fractions 3 and 7, which were effective against ryegrass but not redroot, contained Cry family proteins, including Cry10 Aa, Cry4 Ba, and Cry4 Aa. Additionally, 16s rRNA gene sequencing revealed that the ZT isolate is closely related (98.27%) to Bacillus wiedmannii. CONCLUSION: Conclusively, metabolites from the ZT bacterium hold promise for monocotyledonous weed-targeted herbicides, providing a constructive strategy to confront agricultural issues tied to chemical herbicides and weed resistance. © 2024 Society of Chemical Industry.


Subject(s)
Bacillus , Bacterial Proteins , Herbicides , Lolium , Lolium/microbiology , Lolium/drug effects , Herbicides/pharmacology , Herbicides/chemistry , Bacillus/genetics , Bacillus/physiology , Bacillus/metabolism , Bacterial Proteins/metabolism , Plant Weeds/drug effects
17.
Int J Biol Macromol ; 265(Pt 1): 130749, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467218

ABSTRACT

The aim of this study was to investigate the physicochemical characteristics of nanoparticles formed by the ionic gelation method between chitosan and water-soluble fraction of Persian gum (WPG) for encapsulation of Nigella sativa extract (NSE) as an antiviral agent. Our findings revealed that the particle size, polydispersity index (PDI), and zeta potential of the particles were in the range of 316.7-476.6 nm, 0.259-0.466, and 37.0-58.1 mV, respectively. The amounts of chitosan and WPG as the wall material and the NSE as the core had a considerable impact on the nanoparticle properties. The proper samples were detected at 1:1 chitosan:WPG mixing ratio (MR) and NSE concentration of 6.25 mg/mL. Fourier-transformed infrared (FTIR) spectroscopy proved the interactions between the two biopolymers. The effect of NSE on infectious bronchitis virus (IBV) known as avian coronavirus, was performed by the in-ovo method determining remarkable antiviral activity of NSE (25 mg/mL) and its enhancement through encapsulation in the nanoparticles. These nanoparticles containing NSE could have a promising capability for application in both poultry industry and human medicine as an antiviral product.


Subject(s)
Chitosan , Gammacoronavirus , Nanoparticles , Nigella sativa , Humans , Chitosan/chemistry , Nanoparticles/chemistry , Antiviral Agents/pharmacology , Particle Size
18.
Gene ; 913: 148376, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38490510

ABSTRACT

The human BK Polyomavirus (BKPyV) is a DNA virus that is prevalent in 80 % of the population. Infection with this virus may begin in childhood, followed by asymptomatic persistence in the urinary tract. However, in immunocompromised individuals, especially kidney transplant recipients (KTRs), heightened replication of BKPyV can lead to severe complications. The genome of this virus is divided into three parts; the early and late region, and the non-coding control region (NCCR). Mutations in the NCCR can change the archetype strain to the rearranged strain, and NCCR rearrangements play a significant in virus pathogenesis. Interestingly, diverse types of NCCR block rearrangement result in significant differences in conversion potential and host cell viability in the infected cells. A correlation has been detected between increased viral replication potential and pathogenesis in BKPyV-infected KTRs with specific NCCR rearrangements. The objective of this review study was to examine the disease-causing and clinical consequences of variations in the NCCR in BKPyV-infected KTRs such as virus-associated nephropathy (BKPyVAN).


Subject(s)
BK Virus , Kidney Diseases , Kidney Transplantation , Polyomavirus Infections , Humans , BK Virus/genetics , Kidney Transplantation/adverse effects , DNA, Viral/genetics , Transplant Recipients
19.
Sci Rep ; 14(1): 5381, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443485

ABSTRACT

The qualitative and quantitative assessment of groundwater is one of the important aspects for determining the suitability of potable water. Therefore, the present study has been performed to evaluate the groundwater quality for Achhnera block in the city of Taj, Agra, India, where groundwater is an important water resource. The groundwater samples, 50 in number were collected and analyzed for major ions along with some important trace element. This study has further investigated for the applicability of groundwater quality index (GWQI), and the principal component analysis (PCA) to mark out the major geochemical solutes responsible for origin and release of geochemical solutes into the groundwater. The results confirm that, majority of the collected groundwater samples were alkaline in nature. The variation of concentration of anions in collected groundwater samples were varied in the sequence as, HCO3- > Cl- > SO42- > F- while in contrast the sequence of cations in the groundwater as Na > Ca > Mg > K. The Piper diagram demonstrated the major hydro chemical facies which were found in groundwater (sodium bicarbonate or calcium chloride type). The plot of Schoellar diagram reconfirmed that the major cations were Na+ and Ca2+ ions, while in contrast; major anions were bicarbonates and chloride. The results showed water quality index mostly ranged between 105 and 185, hence, the study area fell in the category of unsuitable for drinking purpose category. The PCA showed pH, Na+, Ca2+, HCO3- and fluoride with strong loading, which pointed out geogenic source of fluoride contamination. Therefore, it was inferred that the groundwater of the contaminated areas must be treated and made potable before consumption. The outcomes of the present study will be helpful for the regulatory boards and policymaker for defining the actual impact and remediation goal.

20.
BMC Pediatr ; 24(1): 135, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38383350

ABSTRACT

BACKGROUND: Poisoning among children and adolescents is a public health problem worldwide. To take preventive measures, the pattern of this problem should be determined. This study aimed to describe the demographic characteristics of poisoning in children and to investigate the relationship between the types of poisoning and demographic factors in children in Kermanshah province. METHODS: This cross-sectional, descriptive-analytical study was conducted on 250 children and adolescents under 18 years of age who were referred to Mohammad Kermanshahi Pediatric Hospital in Kermanshah province due to poisoning during 2019-2022. The demographic and epidemiological data of patients were extracted from their medical files and analyzed. RESULTS: Out of 250 cases of poisoning, 173 (69.2%) cases were unintentional, 96 (55.5%) of whom were boys. Further, 77 (30.8%) cases of poisoning were intentional, of whom 49 (63.6%) were girls. There was a significant difference between gender and intentional and unintentional poisonings (p-value = 0.005). The median age of unintentional poisoning was 3 (IQR = 2.5) and that of intentional poisoning was 14 (IQR = 2). Most cases of poisoning were in cities, 145 (83.8%) of them were unintentional and 66 (85.7%) were intentional. Most cases of intentional and unintentional poisonings occurred in spring 2017 (35.1%) and autumn 2016 (34.6%), respectively. The most common causes of poisoning were narcotics (n = 36, 34.3%) and drugs (n = 35, 33.3%) in the age group 0-3 years and drugs (n = 46, 66.9) in the age group 11-18 years. CONCLUSIONS: The most common causes of poisoning were narcotics and drugs in children and drugs in adolescents. To prevent poisoning in children, parents are required to increase their knowledge of the safe storage of narcotics and drugs, such as not storing methadone in a water bottle. Targeted evaluation and preventive measures are also needed in adolescent poisoning.


Subject(s)
Methadone , Poisoning , Child , Male , Female , Humans , Adolescent , Infant, Newborn , Infant , Child, Preschool , Cities , Iran/epidemiology , Cross-Sectional Studies , Narcotics , Poisoning/epidemiology , Poisoning/etiology
SELECTION OF CITATIONS
SEARCH DETAIL