Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339435

ABSTRACT

Digital elevation model (DEM) plays a vital role in hydrological modelling and environmental studies. Many essential layers can be extracted from this land surface information, including slope, aspect, rivers, and curvature. Therefore, DEM quality and accuracy will affect the extracted features and the whole process of modeling. Despite freely available DEMs from various sources, many researchers generate this information for their areas from various observations. Sentinal-1 synthetic aperture radar (SAR) images are among the best Earth observations for DEM generation thanks to their availabilities, high-resolution, and C-band sensitivity to surface structure. This paper presents a comparative study, from a hydrological point of view, on the quality and reliability of the DEMs generated from Sentinel-1 data and DEMs from other sources such as AIRSAR, ALOS-PALSAR, TanDEM-X, and SRTM. To this end, pair of Sentinel-1 data were acquired and processed using the SAR interferometry technique to produce a DEM for two different study areas of a part of the Cameron Highlands, Pahang, Malaysia, a part of Sanandaj, Iran. Based on the estimated linear regression and standard errors, generating DEM from Sentinel-1 did not yield promising results. The river streams for all DEMs were extracted using geospatial analysis tool in a geographic information system (GIS) environment. The results indicated that because of the higher spatial resolution (compared to SRTM and TanDEM-X), more stream orders were delineated from AIRSAR and Sentinel-1 DEMs. Due to the shorter perpendicular baseline, the phase decorrelation in the created DEM resulted in a lot of noise. At the same time, results from ground control points (GCPs) showed that the created DEM from Sentinel-1 is not promising. Therefore, other DEMs' performance, such as 90-meters' TanDEM-X and 30-meters' SRTM, are better than Sentinel-1 DEM (with a better spatial resolution).

2.
Sensors (Basel) ; 20(24)2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33302396

ABSTRACT

Exact land cover inventory data should be extracted for future landscape prediction and seismic hazard assessment. This paper presents a comprehensive study towards the sustainable development of Tabriz City (NW Iran) including land cover change detection, future potential landscape, seismic hazard assessment and municipal performance evaluation. Landsat data using maximum likelihood (ML) and Markov chain algorithms were used to evaluate changes in land cover in the study area. The urbanization pattern taking place in the city was also studied via synthetic aperture radar (SAR) data of Sentinel-1 ground range detected (GRD) and single look complex (SLC). The age of buildings was extracted by using built-up areas of all classified maps. The logistic regression (LR) model was used for creating a seismic hazard assessment map. From the results, it can be concluded that the land cover (especially built-up areas) has seen considerable changes from 1989 to 2020. The overall accuracy (OA) values of the produced maps for the years 1989, 2005, 2011 and 2020 are 96%, 96%, 93% and 94%, respectively. The future potential landscape of the city showed that the land cover prediction by using the Markov chain model provided a promising finding. Four images of 1989, 2005, 2011 and 2020, were employed for built-up areas' land information trends, from which it was indicated that most of the built-up areas had been constructed before 2011. The seismic hazard assessment map indicated that municipal zones of 1 and 9 were the least susceptible areas to an earthquake; conversely, municipal zones of 4, 6, 7 and 8 were located in the most susceptible regions to an earthquake in the future. More findings showed that municipal zones 1 and 4 demonstrated the best and worst performance among all zones, respectively.

3.
Article in English | MEDLINE | ID: mdl-32650595

ABSTRACT

We used AdaBoost (AB), alternating decision tree (ADTree), and their combination as an ensemble model (AB-ADTree) to spatially predict landslides in the Cameron Highlands, Malaysia. The models were trained with a database of 152 landslides compiled using Synthetic Aperture Radar Interferometry, Google Earth images, and field surveys, and 17 conditioning factors (slope, aspect, elevation, distance to road, distance to river, proximity to fault, road density, river density, normalized difference vegetation index, rainfall, land cover, lithology, soil types, curvature, profile curvature, stream power index, and topographic wetness index). We carried out the validation process using the area under the receiver operating characteristic curve (AUC) and several parametric and non-parametric performance metrics, including positive predictive value, negative predictive value, sensitivity, specificity, accuracy, root mean square error, and the Friedman and Wilcoxon sign rank tests. The AB model (AUC = 0.96) performed better than the ensemble AB-ADTree model (AUC = 0.94) and successfully outperformed the ADTree model (AUC = 0.59) in predicting landslide susceptibility. Our findings provide insights into the development of more efficient and accurate landslide predictive models that can be used by decision makers and land-use managers to mitigate landslide hazards.


Subject(s)
Landslides , Machine Learning , Remote Sensing Technology , Algorithms , Geographic Information Systems , Malaysia
4.
Article in English | MEDLINE | ID: mdl-32545634

ABSTRACT

The declining water level in Lake Urmia has become a significant issue for Iranian policy and decision makers. This lake has been experiencing an abrupt decrease in water level and is at real risk of becoming a complete saline land. Because of its position, assessment of changes in the Lake Urmia is essential. This study aims to evaluate changes in the water level of Lake Urmia using the space-borne remote sensing and GIS techniques. Therefore, multispectral Landsat 7 ETM+ images for the years 2000, 2010, and 2017 were acquired. In addition, precipitation and temperature data for 31 years between 1986 and 2017 were collected for further analysis. Results indicate that the increased temperature (by 19%), decreased rainfall of about 62%, and excessive damming in the Urmia Basin along with mismanagement of water resources are the key factors in the declining water level of Lake Urmia. Furthermore, the current research predicts the potential environmental crisis as the result of the lake shrinking and suggests a few possible alternatives. The insights provided by this study can be beneficial for environmentalists and related organizations working on this and similar topics.


Subject(s)
Lakes , Water , Environmental Monitoring , Iran , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...