Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15543, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969774

ABSTRACT

This study examined the optimal size of an autonomous hybrid renewable energy system (HRES) for a residential application in Buea, located in the southwest region of Cameroon. Two hybrid systems, PV-Battery and PV-Battery-Diesel, have been evaluated in order to determine which was the better option. The goal of this research was to propose a dependable, low-cost power source as an alternative to the unreliable and highly unstable electricity grid in Buea. The decision criterion for the proposed HRES was the cost of energy (COE), while the system's dependability constraint was the loss of power supply probability (LPSP). The crayfish optimization algorithm (COA) was used to optimize the component sizes of the proposed HRES, and the results were contrasted to those obtained from the whale optimization algorithm (WOA), sine cosine algorithm (SCA), and grasshopper optimization algorithm (GOA). The MATLAB software was used to model the components, criteria, and constraints of this single-objective optimization problem. The results obtained after simulation for LPSP of less than 1% showed that the COA algorithm outperformed the other three techniques, regardless of the configuration. Indeed, the COE obtained using the COA algorithm was 0.06%, 0.12%, and 1% lower than the COE provided by the WOA, SCA, and GOA algorithms, respectively, for the PV-Battery configuration. Likewise, for the PV-Battery-Diesel configuration, the COE obtained using the COA algorithm was 0.065%, 0.13%, and 0.39% lower than the COE provided by the WOA, SCA, and GOA algorithms, respectively. A comparative analysis of the outcomes obtained for the two configurations indicated that the PV-Battery-Diesel configuration exhibited a COE that was 4.32% lower in comparison to the PV-Battery configuration. Finally, the impact of the LPSP reduction on the COE was assessed in the PV-Battery-Diesel configuration. The decrease in LPSP resulted in an increase in COE owing to the nominal capacity of the diesel generator.

2.
Sci Rep ; 14(1): 10423, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38710762

ABSTRACT

In this study, we present a comprehensive optimization framework employing the Multi-Objective Multi-Verse Optimization (MOMVO) algorithm for the optimal integration of Distributed Generations (DGs) and Capacitor Banks (CBs) into electrical distribution networks. Designed with the dual objectives of minimizing energy losses and voltage deviations, this framework significantly enhances the operational efficiency and reliability of the network. Rigorous simulations on the standard IEEE 33-bus and IEEE 69-bus test systems underscore the effectiveness of the MOMVO algorithm, demonstrating up to a 47% reduction in energy losses and up to a 55% improvement in voltage stability. Comparative analysis highlights MOMVO's superiority in terms of convergence speed and solution quality over leading algorithms such as the Multi-Objective Jellyfish Search (MOJS), Multi-Objective Flower Pollination Algorithm (MOFPA), and Multi-Objective Lichtenberg Algorithm (MOLA). The efficacy of the study is particularly evident in the identification of the best compromise solutions using MOMVO. For the IEEE 33 network, the application of MOMVO led to a significant 47.58% reduction in daily energy loss and enhanced voltage profile stability from 0.89 to 0.94 pu. Additionally, it realized a 36.97% decrease in the annual cost of energy losses, highlighting substantial economic benefits. For the larger IEEE 69 network, MOMVO achieved a remarkable 50.15% reduction in energy loss and improved voltage profiles from 0.89 to 0.93 pu, accompanied by a 47.59% reduction in the annual cost of energy losses. These results not only confirm the robustness of the MOMVO algorithm in optimizing technical and economic efficiencies but also underline the potential of advanced optimization techniques in facilitating the sustainable integration of renewable energy resources into existing power infrastructures. This research significantly contributes to the field of electrical distribution network optimization, paving the way for future advancements in renewable energy integration and optimization techniques for enhanced system efficiency, reliability, and sustainability.

SELECTION OF CITATIONS
SEARCH DETAIL
...