Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Cell ; 88: 102349, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492426

ABSTRACT

INTRODUCTION: Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung condition that produces symptoms including coughing which may cause by excessive accumulation of scar tissue inflammatory and oxidative stress exacerbation. Sumatriptan, utilized for migraine treatment as a selective 5-HT1B/1D receptor agonist, has demonstrated significant anti-inflammatory and antioxidant properties in multiple preclinical investigations. Operating primarily on serotonin receptors, sumatriptan leverages the diverse physiological functions of serotonin, playing a pivotal role in regulating both inflammation and oxidative stress which is particularly relevant in the context of IPF. MATERIALS & METHODS: Thirty-five male Wistar rats were divided to five group, including: Sham (without IPF induction), control (BLM 5 mg/kg, intraperitoneally), and three fibrosis group with sumatriptan (0.5, 1, and 3 mg/kg, i.p. for 2 weeks) administration. IPF was induced by injection of BLM (single dose, 5 mg/kg intratracheally). Lung tissues were separated for measurement of myeloperoxidase (MPO) as an oxidative stress hallmark, and tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-ß), and transforming growth factor-ß (TGF-ß) as inflammatory markers as well as alpha smooth muscle actin (α-SMA). Also, for histological investigations, tissue damages were assessed by Hematoxylin-eosin (H&E) and Masson's trichrome staining method. RESULTS: BLM-induced fibrosis could increase α-SMA, MPO, TNF-α, IL-1ß, and TGF-ß, while treatment with sumatriptan has reversed the α-SMA, MPO, and IL-1ß levels. Moreover, the results of H&E and Masson's trichrome staining indicated that sumatriptan (1 and 3 mg/kg) reduced tissue damages, alveolar wall thickness, collagen accumulation, and pulmonary fibrosis induced by BLM. CONCLUSION: According to the data achieved from this study, Sumatriptan appears to have therapeutic benefits in IPF, possibly via reducing α-SMA as well as inflammation and the toxicity caused by oxidative stress.


Subject(s)
Actins , Bleomycin , Inflammation , Oxidative Stress , Pulmonary Fibrosis , Rats, Wistar , Sumatriptan , Animals , Bleomycin/toxicity , Oxidative Stress/drug effects , Male , Sumatriptan/pharmacology , Rats , Actins/metabolism , Inflammation/pathology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Lung/pathology , Lung/drug effects , Lung/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...