Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 138: 105655, 2023 02.
Article in English | MEDLINE | ID: mdl-36621086

ABSTRACT

Polylactic acid (PLA) is considered as a great option to be employed as 3D porous scaffold in hard tissue engineering applications owing to its excellent biocompatibility and processability. However, relatively weak mechanical properties and inappropriate biodegradability limit its extensive usage. In order to overcome the mentioned challenges, micrometric magnesium particles were incorporated into the PLA matrix by the fused deposition modeling (FDM) technique. The effects of various Mg contents (i.e., 2, 4, 6, 8 and 10 wt%) on the structural, thermal, rheological, mechanical, wettability, degradability characteristics and cellular behavior of the 3D porous PLA-Mg composite scaffolds were examined. The developed PLA-Mg composites exhibit an interconnected porous structure with a mostly uniform distribution of Mg particles in the PLA matrix. It was found that incorporation of Mg particles into the PLA matrix enhances the mechanical, physical, chemical and biological characteristics of PLA. The cell studies demonstrate that the PLA-6Mg composite scaffold provides the best cellular response in terms of cell atachment and viability. The obtained results in this investigation greatly suggest that the 3D-printed PLA-Mg composite scaffold is a promising candidate for hard tissue engineering applications.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Printing, Three-Dimensional , Polyesters/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...