Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 225: 259-269, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30877920

ABSTRACT

In the current study, hard water softening for the removal of Ca2+ and Mg2+ ions was performed using hydrogel beads based on Gum Tragacance (GT) modified by using 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and poly(vinyl alcohol). The antibacterial spherical hydrogel beads were fabricated by instantaneous gelation of well dispersed mixture of poly(AMPS)-g-GT (1 g), poly(vinyl alcohol) (PVA, 1 g) flocculent, green-synthesized silver metal nanoparticles (AgNPs, 10 mg), and graphene oxide (GO, 10 mg) in the acetone solution of boric acid and then transferring into the different amounts (0.5-2.5 mL) of acidic solution of glutaraldehyde (GA) as cross-linker. The beads were fully characterized and their adsorption behavior matched well with the pseudo-second-order kinetic and the Langmuir isotherm models with the maximum adsorption of Ca2+(114.18 mg g-1) and Mg2+(162.46 mg g-1). The removal ability of the beads decreased by 6% after four adsorption/desorption cycles. The antibacterial performance of the hydrogel beads was also investigated against Gram-positive and Gram-negative bacteria.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Hydrogels/chemistry , Polyvinyl Alcohol/chemistry , Silver/chemistry , Tragacanth/chemistry , Water Softening/methods , Adsorption , Anti-Bacterial Agents/chemistry , Chemistry Techniques, Synthetic , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Kinetics , Microspheres
SELECTION OF CITATIONS
SEARCH DETAIL
...