Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 14(1): 13985, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886450

ABSTRACT

Crocin is a carotenoid compound in saffron with anti-cancer properties. However, its therapeutic application is limited by its low absorption, bioavailability, and stability, which can be overcome through nanocarrier delivery systems. This study used surface-modified Nano-crystalline cellulose (NCC) to deliver crocin to cancer cells. NCC modified with CTAB were loaded with crocin and then conjugated with folic acid (NCF-CR-NPs). The synthesized nanoparticles (NPs) were characterized using FTIR, XRD, DLS, and FESEM. The crystallinity index of NCC was 66.64%, higher than microcrystalline cellulose (61.4%). The crocin loading and encapsulation efficiency in NCF-CR-NPs were evaluated. Toxicity testing by MTT assay showed that NCF-CR-NPs had higher toxicity against various cancer cell lines, including colon cancer HT-29 cells (IC50 ~ 11.6 µg/ml), compared to free crocin. Fluorescent staining, flow cytometry, and molecular analysis confirmed that NCF-CR-NPs induced apoptosis in HT-29 cells by increasing p53 and caspase 8 expression. The antioxidant capacity of NCF-CR-NPs was also evaluated using ABTS and DPPH radical scavenging assays. NCF-CR-NPs exhibited high free radical scavenging ability, with an IC50 of ~ 46.5 µg/ml for ABTS. In conclusion, this study demonstrates the potential of NCF-CR-NPs to deliver crocin to cancer cells effectively. The NPs exhibited enhanced anti-cancer and antioxidant activities compared to free crocin, making them a promising nanocarrier system for crocin-based cancer therapy.


Subject(s)
Apoptosis , Carotenoids , Cellulose , Folic Acid , Nanoparticles , Carotenoids/chemistry , Carotenoids/pharmacology , Folic Acid/chemistry , Folic Acid/pharmacology , Humans , Cellulose/chemistry , Nanoparticles/chemistry , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , HT29 Cells , Drug Carriers/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Cell Line, Tumor , Drug Delivery Systems , Cell Survival/drug effects
2.
IEEE Internet Things J ; 11(9): 16148-16157, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38765485

ABSTRACT

Light exposure is a vital regulator of physiology and behavior in humans. However, monitoring of light exposure is not included in current wearable Internet of Things (IoT) devices, and only recently have international standards defined [Formula: see text] -optic equivalent daylight illuminance (EDI) measures for how the eye responds to light. This article reports a wearable light sensor node that can be incorporated into the IoT to provide monitoring of EDI exposure in real-world settings. We present the system design, electronic performance testing, and accuracy of EDI measurements when compared to a calibrated spectral source. This includes consideration of the directional response of the sensor, and a comparison of performance when placed on different parts of the body, and a demonstration of practical use over 7 days. Our device operates for 3.5 days between charges, with a sampling period of 30 s. It has 10 channels of measurement, over the range 415-910 nm, balancing accuracy and cost considerations. Measured [Formula: see text]-opic EDI results for 13 devices show a mean absolute error of less than 0.07 log lx, and a minimum between device correlation of 0.99. These findings demonstrate that accurate light sensing is feasible, including at wrist worn locations. We provide an experimental platform for use in future investigations in real-world light exposure monitoring and IoT-based lighting control.

3.
Proc Natl Acad Sci U S A ; 120(42): e2301608120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37812713

ABSTRACT

Experimental and interventional studies show that light can regulate sleep timing and sleepiness while awake by setting the phase of circadian rhythms and supporting alertness. The extent to which differences in light exposure explain variations in sleep and sleepiness within and between individuals in everyday life remains less clear. Here, we establish a method to address this deficit, incorporating an open-source wearable wrist-worn light logger (SpectraWear) and smartphone-based online data collection. We use it to simultaneously record longitudinal light exposure (in melanopic equivalent daylight illuminance), sleep timing, and subjective alertness over seven days in a convenience sample of 59 UK adults without externally imposed circadian challenge (e.g., shift work or jetlag). Participants reliably had strong daily rhythms in light exposure but frequently were exposed to less light during the daytime and more light in pre-bedtime and sleep episodes than recommended [T. M. Brown et al., PLoS Biol. 20, e3001571 (2022)]. Prior light exposure over several hours was associated with lower subjective sleepiness with, in particular, brighter light in the late sleep episode and after wake linked to reduced early morning sleepiness (sleep inertia). Higher pre-bedtime light exposure was associated with longer sleep onset latency. Early sleep timing was correlated with more reproducible and robust daily patterns of light exposure and higher daytime/lower night-time light exposure. Our study establishes a method for collecting longitudinal sleep and health/performance data in everyday life and provides evidence of associations between light exposure and important determinants of sleep health and performance.


Subject(s)
Melatonin , Wakefulness , Adult , Humans , Sleepiness , Sleep/physiology , Circadian Rhythm/physiology , United Kingdom
4.
Nanotechnology ; 31(25): 255705, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32168504

ABSTRACT

Anodically oxidized, ultra-thin (d < 10 nm) aluminium films emerge as the dielectric of choice for low-cost thin film capacitors (TFCs), thin film transistors (TFTs), and bio- and chemical sensors. In this work, the dielectric properties of ultra-thin aluminium oxide films grown by anodization in aqueous solutions of citric acid (CA) have been studied. It is observed that the electrolyte strength variation from 0.1 mM to 1000 mM has virtually no influence on the chemical composition, surface morphology and the dielectric properties of the fabricated alumina films. The anodized films are very smooth having RMS area roughness around ∼5 Å. This was further improved after deposition of n-octadecyltrichlorosilane (OTS) self-assembled monolayer (SAM) to ∼4 Å. Also, the XRD and elemental analysis using EDS and XPS unambiguously confirms that the obtained oxide films are amorphous, stoichiometric Al2O3 without any carbon contamination. The fabricated Al/Al2O3/Al MIM capacitors show almost ideal capacitor characteristics from 10 Hz to 100 kHz. It has been found that the OTS coating does not only improve the capacitor frequency response further but also reduces the leakage current through the dielectric layer by passivating reactive dangling bonds on the oxide surface. As a result of the favourable properties of the anodized Al2O3/OTS films, high-performance, low threshold voltage organic thin film transistors (OTFTs) operating below 1 V are successfully demonstrated.

5.
Article in English | MEDLINE | ID: mdl-33408822

ABSTRACT

Background. Corrosion resistance and ion release of alloys play a crucial role in biomedical applications. The present study aimed to investigate an increase in corrosion resistance and reduction in ion release in a commercial Co-Cr-Mo alloy by the chemical passivation method. Methods. Based on ADA97, 20 samples of Flexicast alloy were cast, surface-polished, and electrolytically passivated at room temperature for 24 h in a sodium sulfate solution. Corrosion and ion release of the alloys before and after passivation were studied in normal saline solution. Corrosion resistance and the ion release rates were measured by the weight loss method and atomic absorption spectroscopy, respectively, before and after passivation after 1, 2, 3, and 4 weeks. The surface morphology of the samples was examined using scanning electron microscopy (SEM). The results were analyzed with Kruskal-Wallis and Mann-Whitney tests using SPSS 20 at a significance level of <0.05. Results. The corrosion rate in the passivated samples was significantly lower than the non-passivated samples at the intervals (1, 2, 3, and 4 weeks) (P<0.05). The passivation of the alloy significantly reduced Co and Cr ion release in the first and fourth weeks, and in the first, second, and fourth weeks, respectively (P<0.05). SEM images revealed localized pitting associated with the corrosion, which was less significant in passivated samples. Conclusion. Chemical passivation of the CR-Co alloy significantly reduced corrosion and ionic release of Cr and Co over time.

6.
Materials (Basel) ; 12(16)2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31408941

ABSTRACT

Low-voltage, solution-processed organic thin-film transistors (OTFTs) have tremendous potential to be key components in low-cost, flexible and large-area electronics. However, for these devices to operate at low voltage, robust and high capacitance gate dielectrics are urgently needed. Herein, the fabrication of OTFTs that operate at 1 V is reported. These devices comprise a solution-processed, self-assembled monolayer (SAM) modified tantalum pentoxide (Ta2O5) as the gate dielectric. The morphology and dielectric properties of the anodized Ta2O5 films with and without n-octadecyltrichlorosilane (OTS) SAM treatment have been studied. The thickness of the Ta2O5 film was optimized by varying the anodization voltage. The results show that organic TFTs gated with OTS-modified tantalum pentoxide anodized at 3 V (d ~7 nm) exhibit the best performance. The devices operate at 1 V with a saturation field-effect mobility larger than 0.2 cm2 V-1 s-1, threshold voltage -0.55 V, subthreshold swing 120 mV/dec, and current on/off ratio in excess of 5 × 103. As a result, the demonstrated OTFTs display a promising performance for applications in low-voltage, portable electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...