Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 260(Pt 2): 128949, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38143055

ABSTRACT

Zymosan is a ß-glucan isolated from Saccharomyces cerevisiae that could be employed for drug delivery. We synthesized zymosan nanoparticles and measured their structural and morphological properties using XRD, UV-Vis spectroscopy, TEM and AFM. The loading of doxorubicin (DOX) onto the nanoparticles was confirmed by FT-IR, and the DOX release was shown to be pH-dependent. The effect of these agents on C26 cell viability was evaluated by MTT tests and the expression of genes connected with the Wnt/ß-catenin pathway and apoptosis were analyzed by RT-qPCR and Western blotting. Treatments were able to suppress the proliferation of C26 cells, and the zymosan nanocarriers loaded with DOX enhanced the anti-proliferative effect of DOX in a synergistic manner. Zymosan nanoparticles were able to suppress the expression of cyclin D1, VEGF, ZEB1, and Twist mRNAs. Treatment groups upregulated the expression of caspase-8, while reducing the Bax/Bcl-2 ratio, thus promoting apoptosis. In conclusion, zymosan nanoparticles as DOX nanocarriers could provide a more targeted drug delivery through pH-responsiveness, and showed synergistic cytotoxicity by modifying Wnt/ß-catenin signaling and apoptosis.


Subject(s)
Colorectal Neoplasms , Nanoparticles , Humans , Doxorubicin/chemistry , beta Catenin/metabolism , Zymosan , Wnt Signaling Pathway , Spectroscopy, Fourier Transform Infrared , Apoptosis , Nanoparticles/chemistry , Colorectal Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...