Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Econ Entomol ; 117(3): 809-816, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38568949

ABSTRACT

In this study, we investigated the biological aspects and predation efficiency of 3 aphidophagous ladybird beetles, Coccinella novemnotata, Hippodamia variegata, and Coccinella septempunctata, on the cotton aphid, Aphis gossypii, reared on cucumber plants (Cucumis sativus L. cultivar barracuda) under laboratory conditions. The developmental periods of C. novemnotata, H. variegata, and C. septempunctata were observed to be 16.00 ±â€…0.25, 16.00 ±â€…0.25, and 20.58 ±â€…0.40 days, respectively. The larvae of these ladybird beetles consumed an average of 218.93 ±â€…8.86, 254.77 ±â€…8.86, and 537.36 ±â€…10.49 aphids, respectively. Fourth-instar larvae were particularly efficient, consuming 53.68%, 52.68%, and 52.64% of total aphids for C. novemnotata, H. variegata, and C. septempunctata, respectively. Adult emergence rates were promising, with 91.67%, 100.00%, and 92.86%, accompanied by sex ratios of 63.64%, 53.84%, and 61.54%, respectively. Notably, a single female of C. novemnotata, H. variegata, and C. septempunctata consumed an average of 2,215.30, 2,232.00, and 3,364.50 aphids, respectively, over its lifespan. Coccinella septempunctata demonstrated the highest predation efficiency among the 3 species, suggesting its potential for biological control of A. gossypii in both open fields and greenhouses, promoting sustainable agricultural practices.


Subject(s)
Aphids , Coleoptera , Larva , Pest Control, Biological , Predatory Behavior , Animals , Aphids/physiology , Coleoptera/physiology , Larva/growth & development , Larva/physiology , Cucumis sativus , Female , Male , Food Chain , Nymph/growth & development , Nymph/physiology
2.
Molecules ; 28(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36677536

ABSTRACT

A new series of Schiff-benzimidazole hybrids 3a-o has been designed and synthesized. The structure of the target compounds was proved by different spectroscopic and elemental analysis tools. The target compounds were evaluated for their in vitro cytotoxic activity against 60 cancer cell lines according to NCI single- and five-dose protocols. Consequently, four compounds were further examined against the most sensitive lung cancer A549 and NCI-H460 cell lines. Compounds 3e and 3g were the most active, achieving 3.58 ± 0.53, 1.71 ± 0.17 and 1.88 ± 0.35, 0.85 ± 0.24 against A549 and NCI-H460 cell lines, respectively. Moreover, they showed remarkable inhibitory activity on the VEGFR-2 TK with 86.23 and 89.89%, respectively, as compared with Sorafenib (88.17%). Moreover, cell cycle analysis of NCI-H460 cells treated with 3e and 3g showed cellular cycle arrest at both G1 and S phases (supported by caspases-9 study) with significant pro-apoptotic activity, as indicated by annexin V-FITC staining. The binding interactions of these compounds were confirmed through molecular docking studies; the most active compounds displayed complete overlay with, and a similar binding mode and pose to, Sorafenib, a reference VEGFR-2 inhibitor.


Subject(s)
Antineoplastic Agents , Vascular Endothelial Growth Factor Receptor-2 , Antineoplastic Agents/chemistry , Apoptosis , Benzimidazoles/chemistry , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Molecular Structure , Schiff Bases/pharmacology , Sorafenib/pharmacology , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
3.
Front Chem ; 10: 1039176, 2022.
Article in English | MEDLINE | ID: mdl-36465858

ABSTRACT

Novel series of amidines were synthesized via the interaction between alicyclic amines, cyclic ketones, and a highly electrophilic 4-azidoquinolin-2(1H)-ones without any catalyst or additive. All the obtained products were elucidated based on NMR spectroscopy, mass spectrometry, and elemental analysis. The reaction conditions were optimized using cyclohexanone (2), piperidine (3a), and 4-azido-quinolin-2(1H)-one (1a) under an air atmosphere. The new compounds 4a-l and 5a-c were tested for antiproliferative activity against four cancer cell lines using doxorubicin as a reference drug. The most potent derivatives were compounds 4b, 4d, 4e, 4i, and 5c, with GI50 ranging from 1.00 µM to 1.50 µM. Compound 5c was the most effective derivative against the four cancer cell lines, outperforming doxorubicin. The compounds 4b, 4d, 4e, 4i, and 5c were studied further as topoisomerase I and IIα inhibitors. The compounds tested showed selective inhibition of topo I over topo IIα. Finally, docking studies explain why these compounds prefer topo I over topo IIα.

4.
Bioorg Med Chem ; 73: 117004, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36148773

ABSTRACT

A series of ciprofloxacin-uracil conjugates 5a-t were synthesized and identified by 1H NMR, 13C NMR, mass spectroscopy and elemental analyses. The antibacterial results revealed that the new derivatives exhibited better activity against Gram-positive than the Gram-negative strains; most of the target compounds exhibited good activities against S. aureus ATCC 6538. Compounds 5b and 5g possess the highest activities with MICs of 1.25 and 2.37 µM, respectively, which are more potent than the parent drug ciprofloxacin, MIC, 7.58 µM. In addition, they also exhibited potent activities against MRSA AUMC 261 with MICs, 0.031 and 0.046 µM respectively, higher than ciprofloxacin with MIC, 0.57 µM. Moreover, compounds 5b and 5g showed potent inhibitory activities against DNA gyrase (IC50 = 1.72 and 5.72 µM) and topoisomerase IV (4.36 and 7.77 µM) compared to ciprofloxacin with IC50 values 0.66 and 8.16 µM, respectively. The molecular docking study revealed that compounds 5b and 5g may formed stable interaction with the active sites of DNA gyrase and topoisomerase IV similar to ciprofloxacin. Hence, 5b and 5g are considered promising antibacterial candidated against MRSA AUMC 261 strains that requires further optimization.


Subject(s)
DNA Gyrase , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , DNA Gyrase/genetics , DNA Topoisomerase IV , Microbial Sensitivity Tests , Molecular Docking Simulation , Staphylococcus aureus , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Uracil
5.
J Enzyme Inhib Med Chem ; 37(1): 2679-2701, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36154552

ABSTRACT

A new series of vinyl amide-, imidazolone-, and triazinone-linked combretastatin A-4 analogues have been designed and synthesised. These compounds have been evaluated for their cytotoxic activity against MDA-MB-231 breast cancer cells. The triazinone-linked combretastatin analogues (6 and 12) exhibited the most potent cytotoxic activity, in sub-micromolar concentration compared with combretastatin A-4 as a reference standard. The results of ß-tubulin polymerisation inhibition assay appear to correlate well with the ability to inhibit ß-tubulin polymerisation. Additionally, these compounds were subjected to biological assays relating to cell cycle aspects and apoptosis induction. In addition, the most potent compound 6 was loaded on PEG-PCL modified diamond nanoparticles (PEG-PCL-NDs) and F4 was picked as the optimum formula. F4 exhibited enhanced solubility and release over the drug suspension. In the comparative cytotoxic activity, PEG-PCL modified F4 was capable of diminishing the IC50 by around 2.89 times for nude F4, while by 3.48 times relative to non-formulated compound 6.


Subject(s)
Antineoplastic Agents , Nanoparticles , Amides/pharmacology , Antineoplastic Agents/pharmacology , Bibenzyls , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Molecular Structure , Solubility , Stilbenes , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/pharmacology
6.
Biomed Rep ; 16(1): 4, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34900253

ABSTRACT

Congenital nephrotic syndrome (CNS) is an autosomal recessive disorder usually detected in the first 3 months of life when the syndromes effects manifest, including edema and a failure to gain weight. A baby boy was admitted to the Neonatal Intensive Care Unit for prematurity (35 weeks) with unremarkable maternal prenatal laboratory tests. The patient had persistent systemic hypertension, hypoproteinemia, hypoalbuminemia and nephrotic range proteinuria. CNS was diagnosed, and genetic testing showed a homozygous variant, c.3024A>G (AGA>AGG) in exon 22 of the nephrin locus. Bioinformatics analysis suggested the genetic condition was likely a result of malfunctional DNA binding sites of transcription factors FOXL1 and FOXC1.

7.
Molecules ; 26(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34833890

ABSTRACT

A mild and versatile method based on Cu-catalyzed [2+3] cycloaddition (Huisgen-Meldal-Sharpless reaction) was developed to tether 3,3'-((4-(prop-2-yn-1-yloxy)phenyl)methylene)bis(4-hydroxyquinolin-2(1H)-ones) with 4-azido-2-quinolones in good yields. This methodology allowed attaching three quinolone molecules via a triazole linker with the proposed mechanism. The products are interesting precursors for their anti-proliferative activity. Compound 8g was the most active one, achieving IC50 = 1.2 ± 0.2 µM and 1.4 ± 0.2 µM against MCF-7 and Panc-1 cell lines, respectively. Moreover, cell cycle analysis of cells MCF-7 treated with 8g showed cell cycle arrest at the G2/M phase (supported by Caspase-3,8,9, Cytochrome C, BAX, and Bcl-2 studies). Additionally, significant pro-apoptotic activity is indicated by annexin V-FITC staining.


Subject(s)
Click Chemistry/methods , Quinolones/chemistry , Triazoles/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Copper/chemistry , Drug Screening Assays, Antitumor/methods , Humans , MCF-7 Cells , Molecular Structure , Quinolones/chemical synthesis , Structure-Activity Relationship , Triazoles/chemical synthesis
8.
Mol Divers ; 25(1): 13-27, 2021 Feb.
Article in English | MEDLINE | ID: mdl-31916112

ABSTRACT

A new series of 6-substituted quinolin-2-one thiosemicarbazides 6a-j has been synthesized. The structure of the target compounds was proved by different spectroscopic and elemental analyses. All the designed final compounds were evaluated for their in vitro activity against the urease-producing R. mucilaginosa and Proteus mirabilis bacteria as fungal and bacterial pathogens, respectively. Moreover, all compounds were in vitro tested as potential urease inhibitors using the cup-plate diffusion method. Compounds 6a and 6b were the most active with (IC50 = 0.58 ± 0.15 and 0.43 ± 0.09 µM), respectively, in comparison with lead compound I (IC50 = 1.13 ± 0.00 µM). Also, the designed compounds were docked into urease proteins (ID: 3LA4 and ID: 4UBP) using Open Eye® software to understand correctly about ligand-receptor interactions. The docking results revealed that the designed compounds can interact with the active site of the enzyme through multiple strong hydrogen bonds. Moreover, rapid overlay of chemical structures' analysis was described to understand the 3D QSAR of synthesized compounds as urease inhibitors. The results emphasize the importance of polar thiosemicarbazide directly linked to 6-substituted quinolone moieties as promising antimicrobial urease inhibitors.


Subject(s)
Anti-Infective Agents/pharmacology , Enzyme Inhibitors/pharmacology , Semicarbazides/pharmacology , Urease/antagonists & inhibitors , Bacteria/drug effects , Bacteria/metabolism , Catalytic Domain/drug effects , Fungi/drug effects , Fungi/metabolism , Molecular Docking Simulation/methods , Quinolones/pharmacology , Structure-Activity Relationship
9.
Article in English | MEDLINE | ID: mdl-33255614

ABSTRACT

The purpose of this study was to investigate streptomycete populations in desert and savanna ecozones in Sudan and to identify species based on 16S rRNA gene sequences. A total of 49 different Streptomyces phenotypes (22 from sites representing the desert and semi-desert ecozone; 27 representing the savanna ecozone) have been included in the study. The isolates were characterized phenotypically and confirmed using 16S rRNA gene sequence analysis. The two ecozones showed both similarities and uniqueness in the types of isolates. The shared species were in cluster 1 (Streptomyces (S.) werraensis), cluster 2 (Streptomyces sp.), cluster 3 (S. griseomycini-like), and cluster 7 (S. rochei). The desert ecozone revealed unique species in cluster 9 (Streptomyces sp.) and cluster 10 (S. griseomycini). Whereas, the savanna ecozone revealed unique species in cluster 4 (Streptomyces sp.), cluster 5 (S. albogriseolus/ S. griseoincarnatus), cluster 6 (S. djakartensis), and cluster 8 (Streptomyces sp.). Streptomycetes are widely distributed in both desert and the savanna ecozones and many of these require full descriptions. Extending knowledge on Streptomyces communities and their dynamics in different ecological zones and their potential antibiotic production is needed.


Subject(s)
Soil Microbiology , Streptomyces , Cluster Analysis , Desert Climate , Genetic Variation , Grassland , Phylogeny , RNA, Ribosomal, 16S/genetics , Streptomyces/classification , Streptomyces/genetics , Streptomyces/isolation & purification , Sudan
10.
Bioorg Chem ; 96: 103628, 2020 03.
Article in English | MEDLINE | ID: mdl-32062064

ABSTRACT

A new series of 6-substiuted-4-(2-(4-substituted-benzylidene)hydrazinyl)quinolin-2(1H)-one derivatives have been designed and synthesized. The structure of the synthesized compounds was proved by 1H NMR, 13C NMR, 2D NMR, mass and elemental analyses. The target compounds were evaluated for their in vitro cytotoxic activity against 60 cancer cell lines according to NCI protocol. Consequently, the most active compounds were further examined against the most sensitive leukemia RPMI-8226 and on healthy cell lines. 6-Chloro-derivative was the most active one; with IC50 = 15.72 ± 1.21 and 46.05 ± 2.36 µM against RPMI-8226 and normal cell lines, respectively. Also, it showed a remarkable inhibitory activity compared to gefitinib on the EGFR TK mutant, wild and on H-RAS in addition to STAT-3 with IC50 = 695.49 ± 21.8, 263.15 ± 15.13, 10.61 ± 0.27 and 1.753 ± 0.81 nM, respectively. Cell cycle analysis of RPMI-8226 cells treated with the 6-chloro-derivative showed cell cycle arrest at G2/M phase (supported by Caspases-3,8, BAX and Bcl-2 studies) with a significant pro-apoptotic activity as indicated by annexin V-FITC staining. Moreover, the docking studies ROCS analysis and Tanimoto scores supported the results. The study illustrated the effect of several factors on compounds activity.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Erlotinib Hydrochloride/analogs & derivatives , Erlotinib Hydrochloride/pharmacology , Leukemia/drug therapy , Signal Transduction/drug effects , Cell Line , Cell Line, Tumor , Drug Design , ErbB Receptors/metabolism , Humans , Leukemia/metabolism , Models, Molecular , Quinolines/chemistry , Quinolines/pharmacology , STAT3 Transcription Factor/metabolism
11.
Exp Ther Med ; 18(5): 3461-3469, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31602221

ABSTRACT

Lipopolysaccharide (LPS), a potent endotoxin present in the outer membrane of Gram-negative bacteria, causes chronic immune responses associated with inflammation. In the present study, the association between LPS and the dysbiosis of Gram-negative bacteria in the gut microbiome was determined in patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (T2DM-CKD; stages 4 and 5, not on dialysis) compared with healthy individuals. Microbiome diversity was analyzed in patients with T2DM-CKD and healthy controls by sequencing the hypervariable sub-regions of the 16S ribosomal RNA gene from stool samples. Serum samples were assayed by ELISA for LPS, C-reactive protein (CRP), tumor necrosis factor-α (TNFα), interleukin-6 (IL6) and endothelin-1. A total of four gut Gram-negative phyla (Bacteroidetes, Proteobacteria, Fusobacteria and Verrucomicrobia) were identified in the gut microbiome of the T2DM-CKD and control groups. Proteobacteria, Verrucomicrobia and Fusobacteria exhibited significantly increased relative abundance in patients with T2DM-CKD when compared with controls (P<0.05). The levels of serum LPS were significantly increased in patients with T2DM-CKD compared with controls (P<0.05). Elevated serum LPS was significantly correlated with increased levels of TNFα, IL6 and CRP. The dysbiosis of Gram-negative bacteria in the gut microbiome of patients with T2DM-CKD may contribute to the elevated serum levels of LPS and the consequential effects on the inflammatory biomarkers in these patients. The association between the dysbiosis of Gram-negative bacteria in the gut microbiome of patients with T2DM-CKD, increased LPS levels and the effects on inflammatory biomarkers may provide insight into potential diagnostic and therapeutic approaches in the treatment of T2DM-CKD.

12.
Bioorg Chem ; 90: 103045, 2019 09.
Article in English | MEDLINE | ID: mdl-31212178

ABSTRACT

Two new series of diethyl 2-[2-(substituted-2-oxo-1,2-dihydroquinolin-4-yl)hydrazono]-succinates 6a-g and 1-(2-oxo-1,2-dihydroquinolin-4-yl)-1H-pyrazoles 7a-f have been designed and synthesized. The structures of the synthesized compounds were proved by IR, mass, NMR (2D) spectra and elemental analyses. The target compounds were evaluated for their in vitro cytotoxic activity against 60 cancer cell lines according to NCI protocol. Consequently, seven compounds were further examined against the most sensitive cell lines, leukemia CCRF-CEM, and MOLT-4. 5-Amino-1-(6-bromo-2-oxo-1,2-dihydroquinolin-4-yl)-1H-pyrazole-3,4-dicarbonitrile (7f) was the most active product, with IC50 = 1.35 uM and 2.42 uM against MOLT-4 and CCRF-CEM, respectively. Also, it showed a remarkable inhibitory activity compared to erlotinib on the EGFR TK with IC50 = 247.14 nM and 208.42 nM, respectively. Cell cycle analysis of MOLT-4 cells treated with 7f showed cell cycle arrest at G2/M phase (supported by Caspases, BAX and Bcl-2 studies) with a significant pro-apoptotic activity as indicated by annexin V-FITC staining. Moreover, the docking study indicated that both the pyrazole moiety and the quinolin-2-one ring showed good fitting into EGFR (PDB code: 1M17). In order to interpret SAR of the designed compounds, and provide a basis for further optimization, molecular docking of the synthesized compounds to known EGFR inhibitors was performed. The study illustrated the effect of several factors on the compounds' activity.


Subject(s)
Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Quinolones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Erlotinib Hydrochloride/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Quinolones/chemical synthesis , Quinolones/metabolism , Structure-Activity Relationship
13.
Front Genet ; 10: 44, 2019.
Article in English | MEDLINE | ID: mdl-30792735

ABSTRACT

Autosomal Dominant Polycystic Kidney Disease (ADPKD) typically results from a mutation in the PKD1 and PKD2 genes, which code for polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Mutations in these genes promote renal cystic dysplasia and are a significant cause of End-Stage Kidney Disease (ESKD). Polycystic kidney disease-3 (PKD3), another form of ADPKD, is caused by mutations in glucosidase II alpha subunit (GANAB) gene and present in mid- and late adulthood. We report a description of an ADPKD case in a 12-year-old female presented bilateral renal cysts in adolescence. Two mutations in two genes PKD1 and GANAB were identified by targeted capture and next-generation sequencing (NGS) on an Illumina sequencing system. The identified PKD1 mutation p.Pro61Leu: c.182C > T (CCC > CTC) a missense type of uncertain clinical significance. However, the identified PKD1 mutation can alter transcription factors motifs and consequently disturb the transcription process. The second mutation identified in GANAB locus, p.Arg61Ter: c.181C > T, a nonsense type, CGA > TGA. The mutation is unreported pathogenic variant can cause loss of the glucosidase II alpha subunit normal protein function. Both the patient father and paternal grandmother had a history of ADPKD but never were tested. This case is the first case of combine presentation on PKD1 and PKD3 in a pediatric patient with nephrolithiasis.

14.
Front Public Health ; 6: 311, 2018.
Article in English | MEDLINE | ID: mdl-30416993

ABSTRACT

Tobacco smoking is a research topic of high interest to the public health in Iraq. Although Iraq is a country with a high percentage of smokers, we noticed the dearth of adequate studies and programs to deal with this problem. The percentage of smokers exceed 30% of the population and smoking problem becomes a permanent habit in adults and young people. The problems associated with tobacco smoking behavior related to individuals' post-traumatic stress disorder following post-war conflicts, and the social and cultural environment. The health consequences of tobacco smoking can harm almost every organ in the body, and there are reports confirmed the tobacco smoking is a high-risk factor for lung cancer and other diseases. The relative risk of lung cancer increases with increasing duration and intensity of smoking. Also, smoking associated with bladder, prostate, and head and neck cancers, in addition to respiratory diseases. Intervention efforts should focus on reducing the prevalence of cigarette smoking, introduce effective treatments for cancer and quit smoking. In this perspective article, we present our viewpoint and three scenarios to deal with the problem of tobacco smoking in Iraq. We recommend introducing educational, health and legislative policies for quitting smoking and using effective treatments for cancer.

15.
Front Genet ; 9: 198, 2018.
Article in English | MEDLINE | ID: mdl-29951083

ABSTRACT

Tobacco smoking is widespread behavior in Qatar and worldwide and is considered one of the major preventable causes of ill health and death. Nicotine is part of tobacco smoke that causes numerous health risks and is incredibly addictive; it binds to the α7 nicotinic acetylcholine receptor (α7nAChR) in the brain. Recent studies showed α7nAChR involvement in the initiation and addiction of smoking. Kynurenic acid (KA), a significant tryptophan metabolite, is an antagonist of α7nAChR. Inhibition of kynurenine 3-monooxygenase enzyme encoded by KMO enhances the KA levels. Modulating KMO gene expression could be a useful tactic for the treatment of tobacco initiation and dependence. Since KMO regulation is still poorly understood, we aimed to investigate the 5' and 3'-regulatory factors of KMO gene to advance our knowledge to modulate KMO gene expression. In this study, bioinformatics methods were used to identify the regulatory sequences associated with expression of KMO. The displayed differential expression of KMO mRNA in the same tissue and different tissues suggested the specific usage of the KMO multiple alternative promoters. Eleven KMO alternative promoters identified at 5'-regulatory region contain TATA-Box, lack CpG Island (CGI) and showed dinucleotide base-stacking energy values specific to transcription factor binding sites (TFBSs). The structural features of regulatory sequences can influence the transcription process and cell type-specific expression. The uncharacterized LOC105373233 locus coding for non-coding RNA (ncRNA) located on the reverse strand in a convergent manner at the 3'-side of KMO locus. The two genes likely expressed by a promoter that lacks TATA-Box harbor CGI and two TFBSs linked to the bidirectional transcription, the NRF1, and ZNF14 motifs. We identified two types of microRNA (miR) in the uncharacterized LOC105373233 ncRNA, which are like hsa-miR-5096 and hsa-miR-1285-3p and can target the miR recognition element (MRE) in the KMO mRNA. Pairwise sequence alignment identified 52 nucleotides sequence hosting MRE in the KMO 3' UTR untranslated region complementary to the ncRNA LOC105373233 sequence. We speculate that the identified miRs can modulate the KMO expression and together with alternative promoters at the 5'-regulatory region of KMO might contribute to the development of novel diagnostic and therapeutic algorithm for tobacco smoking.

16.
Front Public Health ; 6: 96, 2018.
Article in English | MEDLINE | ID: mdl-29707532

ABSTRACT

BACKGROUND: CYP1A1 gene polymorphisms and tobacco smoking are among several risk factors for various types of cancers, but their influence on breast cancer remains controversial. We analyzed the possible association of CYP1A1 gene polymorphisms and tobacco smoking-related breast cancer in women from Iraq. MATERIALS AND METHODS: In this case-control study, gene polymorphism of CYP1A1 gene (CYP1A1m1, T6235C and CYP1A1m2, A4889G) of 199 histologically verified breast cancer patients' and 160 cancer-free control women's specimens were performed by using PCR-based restriction fragment length polymorphism. RESULTS: Three genotype frequencies (TT, TC, and CC) of CYP1A1m1T/C appeared in 16.1, 29.6, and 54.3% of women with breast cancer, respectively, compared with 41.2, 40, and 18.8% in the control group, respectively. CYP1A1m1 CC genotype and C allele were significantly associated with increased risks for breast cancer in patients (54.3 and 69%, respectively) compared with controls (18.8 and 39%, respectively). While the three genotype frequencies (AA, AG, and GG) of CYP1A1m2A/G were detected in 20.1, 31.2, and 48.7% in patients compared with 46.3, 40.6, and 13.1% in controls, respectively. The frequency of GG genotypes and G allele was significantly higher in patients (48.7 and 64%, respectively) than in the controls (13.1 and 33%, respectively). Smoking women having either CC or GG genotypes showed a highly significant association with increased risk of breast cancer [odds ratio (OR) = 1.607, 95% confidence interval (CI) 0.91-1.64, p = 0.0001, and OR, 1.841, 95% CI, 0.88-1.67, p = 0.0001, respectively]. On the other hand, the T and A alleles of predominantly seen in healthy smoking women (83 and 85%, p = 0.0001, respectively). CONCLUSION: These findings indicated that both C and G alleles of CYP1A1m1 and m2 were significantly associated with elevated risk of breast cancer in Iraqi women, while the T and A alleles were predominantly seen in healthy controls which may indicate their protective role. The C and G association with breast cancer incidence was more prevalent among tobacco smoking patients. These polymorphisms may be used as biomarkers of breast cancer in women from Iraq.

17.
Front Public Health ; 6: 84, 2018.
Article in English | MEDLINE | ID: mdl-29616208

ABSTRACT

Cancer is a significant health problem in the Middle East and global population. It is well established that there is a direct link between tobacco smoking and cancer, which will continue to pose a significant threat to human health. The impact of long-term exposure to tobacco smoke on the risk of cancer encouraged the study of biomarkers for vulnerable individuals to tobacco smoking, especially children, who are more susceptible than adults to the action of environmental carcinogens. The carcinogens in tobacco smoke condensate induce DNA damage and play a significant role in determining the health and well-being of smokers, non-smoker, and primarily children. Cancer is a result of genomic and epigenomic malfunctions that lead to an initial premalignant condition. Although premalignancy genetic cascade is a much-delayed process, it will end with adverse health consequences. In addition to the DNA damage and mutations, tobacco smoke can cause changes in the DNA methylation and gene expression associated with cancer. The genetic events hint on the possible use of genomic-epigenomic changes in genes related to cancer, in predicting cancer risks associated with exposure to tobacco smoking. Bioinformatics provides indispensable tools to identify the cascade of expressed genes in active smokers and non-smokers and could assist the development of a framework to manage this cascade of events linked with the evolvement of disease including cancer. The aim of this mini review is to cognize the essential genomic processes and health risks associated with tobacco smoking and the implications of bioinformatics in cancer prediction, prevention, and intervention.

18.
J Clin Med ; 6(9)2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28925931

ABSTRACT

Trimethylamine-N-oxide (TMAO) is a product of dietary, gut microbiome, and tissues metabolism. Elevated blood TMAO levels are associated with heart attack, stroke and chronic kidney disease (CKD). The purpose of our study was to investigate the gut microbiota associated with trimethylamine (TMA) production, the precursor of TMAO, and the serum levels of TMAO and inflammatory biomarkers associated with type 2 diabetes mellitus (T2DM) and CKD. Twenty adults with T2DM and advanced CKD and 20 healthy adults participated in the study. Analyses included anthropometric and metabolic parameters, characterization of TMA producing gut microbiota, and concentrations of TMAO, lipopolysaccharides (LPS) endotoxin, zonulin (Zo) gut permeability marker, and serum inflammatory and endothelial dysfunction biomarkers. Diversity of the gut microbiota was identified by amplification of V3-V4 regions of the 16S ribosomal RNA genes and DNA sequencing. TMAO was quantified by Mass Spectrometry and serum biomarkers by ELISA. The significance of measurements justified by statistical analysis. The gut microbiome in T2DM-CKD patients exhibited a higher incidence of TMA-producing bacteria than control, p < 0.05. The serum levels of TMAO in T2DM-CKD patients were significantly higher than controls, p < 0.05. TMAO showed a positive correlation with Zo and LPS, inflammatory and endothelial dysfunction biomarkers. A positive correlation was observed between Zo and LPS in T2DM-CKD subjects. An increased abundance of TMA-producing bacteria in the gut microbiota of T2DM-CKD patients together with excessive TMAO and increased gut permeability might impact their risk for cardiovascular disease through elevation of chronic inflammation and endothelial dysfunction.

19.
Article in English | MEDLINE | ID: mdl-24110649

ABSTRACT

Proteomics information of cancer has shown that abnormalities at the levels of growth factors, receptors, intracellular mediators and transcription factors play major role in the disease progression. We report a directly quantifiable approach to measure tumor cell behavior on functionalized chips. The chips were functionalized with aptamer molecules that were selective against epidermal growth factor receptor (EGFR), a commonly overexpressed cancer biomarker. The chip-bound aptamer selectively isolated tumor cells from cell mixture samples. The isolated cells were thus bound to the chip surface. However, some normal cells also got captured on the surface. The selectivity and sensitivity of tumor isolation changed when the surface of the chip was chemically treated to create nanoscale texture. The captured cancer cells showed distinctly different behavior on the surface of the chip than that for the normal cells. The behavior quantification can serve as a novel modality to detect cancer cells from simple samples like blood, saliva or urine.


Subject(s)
Biomarkers, Tumor/analysis , Cell Separation/instrumentation , Microarray Analysis/instrumentation , Neoplasms/chemistry , Neoplastic Cells, Circulating/chemistry , Biomarkers, Tumor/chemistry , Humans , Nanotechnology/instrumentation , Neoplasms/metabolism , Neoplastic Cells, Circulating/metabolism
20.
Sudan j. med. sci ; 5(4): 277-283, 2010. ilus
Article in English | AIM (Africa) | ID: biblio-1272386

ABSTRACT

Background: The potential problems related to the use of formalin in histopathology; such as health hazards; deterioration of nuclei acids are well-known. The aim of this study was to evaluate the utilization of a Carnoy's solution fixation in comparison with formalin on subsequent tissue sectioning and histochemical staining. Materials and Methods: Corresponding sections of 25 tissue biopsies of rabbit's different organs were fixed in Carnoy's solution and in 10neutral buffered formalin. Samples were processed using the conventional method and then stained applying five histochemical methods. The degree of the quality of the staining was assessed for each method by scoring system (1-10) depending on comparison of the stained tissue sections with illustrated photomicrographs. Results: For the quality of cutting; the best quality was obtained by Formalin (mean = 4.76) then Carnoy's fixative (mean =3.84). The best quality of Haematoxylin and Eosin staining was obtained by formalin (mean =5.28) then Carnoy's (mean = 4.00). For Alcian blue and Perl's Prussian blue; the best staining qualities were obtained by Formalin (mean = 4.76 and 5.64 respectively) followed by Carnoy's (mean = 2.88 and 3.92 respectively). For periodic Acid Schiff's the best staining quality was obtained following Carnoy's fixation (mean = 4.52) then; the formalin (mean = 3.76). Conclusion: Although; Carnoy's fluid is a safe fixative and can rapidly penetrate the tissues; but it can't be a substitute for formalin


Subject(s)
Histocytochemistry , Tissues
SELECTION OF CITATIONS
SEARCH DETAIL
...