Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 16(2): e54403, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38505441

ABSTRACT

The H1-antihistamine diphenhydramine antagonizes cholinesterase inhibitor poisoning in various animal species. One aspect of acute antidotal actions of diphenhydramine is increasing the median lethal doses (LD50) of toxicants. The objective of this meta-analysis was to assess the antidotal action of diphenhydramine against short-term toxicity (LD50) of cholinesterase inhibitors in experimental animals. The experimental studies selected were according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. They were conducted in laboratory animals (mice, rats, and chicks) to determine acute LD50 values of cholinesterase inhibitors (organophosphates, carbamates, and imidocarb) under the influence of diphenhydramine vs. controls. Twenty-eight records were selected from 12 studies on mice (n= 242), rats (n= 27), and young chicks (n= 128). The forest plot of randomized two-group meta-analysis assessed effect size, subgroup analysis, drapery prediction, heterogeneity, publication bias-funnel plot as well as one-group proportions meta-analysis of percent protection. Diphenhydramine significantly increased the combined effect size (i.e. increased LD50) in intoxicated experimental animals in comparison to controls (-3.71, standard error (SE) 0.36, 95%CI -4.46, -2.97). The drapery plot proposed a wide range of confidence intervals. The I2 index of heterogeneity of the combined effect size was high at 81.03% (Q= 142.3, p < 0.0001). Galbraith regression also indicated data heterogeneity; however, the normal quantile plot indicated no outliers. Subgroup analysis indicated significantly high heterogeneity with organophosphates (I2 = 63.72%) and carbamates (I2 = 76.41%), but low with imidocarb (I2 = 51.48%). The funnel plot and Egger regression test (t= -13.7, p < 0.0001) revealed publication bias. The median of the diphenhydramine protection ratio was 1.655, and the related forest plot of one group proportion meta-analysis revealed a statistically high level of protection (0.594, SE 0.083, 95%CI 0.432, 0.756), with high heterogeneity (I2= 99.86). The risk of bias assessment was unclear, while the total score (16 out of 20) of each study leaned towards the side of the low risk of bias. In conclusion, the meta-analysis of LD50 values indicated that diphenhydramine unequivocally protected experimental animals from the acute toxicity of cholinesterase inhibitors. The drug could be an additional antidote against acute poisoning induced by cholinesterase inhibitors, but a word of caution: it is not to be considered as a replacement for the standard antidote atropine sulfate. Further studies are needed to examine the action of diphenhydramine on adverse chronic effects of cholinesterase inhibitors.

2.
Cureus ; 15(10): e47220, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38022101

ABSTRACT

Blood butyrylcholinesterase (BChE) activity has been found to decrease during pregnancy and reportedly decrease even more in preeclampsia (PE). The purpose of the present meta-analysis was to answer a specific question of whether BChE activity (in the plasma, serum, or whole blood) is reduced in pregnant women suffering from PE compared to those with normal pregnancy. The meta-analysis included 15 studies with 20 records of BChE activity in 608 women compared to 569 healthy pregnant (control) ones. The studies were subjected to quality assessment using the Newcastle-Ottawa Scale (NOS). Using the Meta-Essentials software program 1.5, the one-group random effects model and forest plot revealed that the percentage of BChE activity in pregnant women with PE was 84.84% of the control value, with a standard error of 4.09 and 95% C.I. of 76.28, 93.41, indicating a significant 15.16% reduction in BChE activity in comparison to healthy pregnancy. No significant heterogeneity was seen in the analyzed data and the funnel plot did show publication bias. Subgroup (mild, severe, and unclassified PE) forest plot analysis revealed that the % BChE activities in PE compared to respective healthy pregnancies were 96.28%, 97.08%, and 76.62%, respectively with no heterogeneity. The median NOS score of the 15 studies included in the meta-analysis was 7, ranging from 5 to 8 (medium to high quality), and the forest plot showed an effect size of 0.735. This meta-analysis shows that BChE activity is reduced in PE compared with normal pregnancy and its value as a biomarker warrants further clinical studies.

3.
Vet World ; 16(1): 118-125, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36855355

ABSTRACT

Background and Aim: Diphenhydramine is an H1-antihistamine that counteracts the toxic effects of organophosphate and carbamate insecticides that inhibit cholinesterase (ChE) activity. This meta-analysis aimed to investigate the effects of diphenhydramine on ChE inhibition induced by these insecticides in the plasma, erythrocytes, or whole brain of experimental animals. Materials and Methods: A data search was performed on erythrocyte, plasma, and brain ChE inhibition caused by organophosphate and carbamate insecticides in experimental animals (mice, rats, and chicks) treated with the antihistamine diphenhydramine in accordance with preferred reporting items for systematic reviews and meta-analysis, which was done by the two-group random-effects model meta-analysis. The meta-analysis included 18 records extracted from six studies that, appeared from 1996 to 2022. Results: Using the random-effects model, a two-group meta-analysis revealed that the combined effect size (ChE inhibition) was significantly more favorable in the control group than in the diphenhydramine intervention, as shown by a forest plot. The combined effect size (standardized mean difference) was 0.67, with a standard error of 0.3, a lower limit of 0.04, and an upper limit of 1.29 (p = 0.025). The heterogeneity was moderate, as I2 of the combined effect size was 74%, with a significant Cochrane Q-test result (Q = 65, p < 0.0001). Subgroup analysis indicated that, with brain ChE inhibition, the heterogeneity (I2) became 5%, which was lower than ChE inhibition in plasma (84%) and erythrocytes (78%). No publication bias was identified using the funnel plot and Egger's test. Conclusion: This meta-analysis suggests that, in addition to its documented antidotal action against ChE-inhibiting insecticides, diphenhydramine can also reduce the extent of ChE inhibition, especially in the brain, which is the main site of toxicity of these insecticides. There is a need for additional studies to assess such enzyme inhibition in different parts of the brain.

4.
BMC Res Notes ; 13(1): 512, 2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33160417

ABSTRACT

OBJECTIVES: Malaria infection is still known to be a worldwide public health problem, especially in tropical and sub-tropical African countries like Sudan. A pilot study conducted to describe the trend of P. falciparum drug resistance markers in 2017-2018 in comparison to CQ and AS/SP eras in Sudan. The Pfcrt, Pfmdr-1, Pfdhfr, and Pfdhps genes were investigated. Data deposited by the worldwide antimalarial resistance network was consulted, and the molecular markers previously reported from Sudan were analyzed. RESULTS: Drug molecular markers analysis was successfully done on 20 P. falciparum isolates. The Pfcrt K76 showed high frequency; 16 (80%). For the Pfmdr-1, 9 (45%) isolates were carrying the N86 allele, and 11 (55%) were 86Y allele. While the Y184F of the Pfmdr-1 showed a higher frequency of 184F compared to Y184; 16 (80%) and 4 (20%), respectively. In the Pfdhfr, 51I allele showed higher frequency compared to N51; 18 (90%) and 2 (10%), respectively. For S108N, 18 (90%) were 108 N and 2 (10%) were S108. In the Pfdhps, all isolates were carrying the mutant alleles; 437G and 540E. The frequency distribution of the Pfcrt, Pfmdr-1, Pfdhfr, Pfdhps was significantly different across the whole years in Sudan.


Subject(s)
Antimalarials , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Combinations , Drug Resistance/genetics , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Pilot Projects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Pyrimethamine/therapeutic use , Sudan , Sulfadoxine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...