Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
J Biomater Sci Polym Ed ; : 1-16, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923918

ABSTRACT

This study aimed to synthesize and characterize chitosan-coated noisomal doxorubicin for the purpose of enhancing its medical application, particularly in the field of cancer treatment. Doxorubicin, a potent chemotherapeutic agent, was encapsulated within noisomes, which are lipid-based nanocarriers known for their ability to efficiently deliver drugs to target sites. Chitosan, a biocompatible and biodegradable polysaccharide, was used to coat the surface of the noisomes to improve their stability and enhance drug release properties. The synthesized chitosan-coated noisomal doxorubicin was subjected to various characterization techniques to evaluate its physicochemical properties. Transmission electron microscopy (TEM) revealed a spherical structure with a diameter of 500-550 ± 5.45 nm and zeta potential of +11 ± 0.13 mV with no aggregation or agglomeration. Chitosan-coated noisomes can loaded doxorubicin with entrapping efficacy 75.19 ± 1.45%. While scanning electron microscopy (SEM) revealed well-defined pores within a fibrous surface. It is observed that chitosan-coated niosomes loading doxorubicin have optimum roughness (22.88 ± 0.71 nm). UV spectroscopy was employed to assess the drug encapsulation efficiency and release profile. Differential scanning calorimetry (DSC) helped determine the thermal behavior, which indicated a broad endotherm peak at 52.4 °C, while X-ray diffraction (XRD) analysis provided information about the crystallinity of the formulation with an intense peak at 23.79°. Fourier-transform infrared spectroscopy (FTIR) indicated the formation of new bonds between the drug and the polymer. The findings from this study will contribute to the knowledge of the physical and chemical properties of the synthesized formulation, which is crucial for ensuring its stability, drug release kinetics, and biological activity. The enhanced chitosan-coated noisomal doxorubicin has the potential to improve the effectiveness and safety of doxorubicin in cancer treatment, offering a promising strategy for enhanced medical applications.

2.
Article in English | MEDLINE | ID: mdl-38918977

ABSTRACT

INTRODUCTION: Doxorubicin (DOX) is one of the most potent anticancer drugs that has ubiquitous usage in oncology; however, its marked adverse effects, such as cardiotoxicity, are still a major clinical issue. Plant extracts have shown cardioprotective effects and reduced the risk of cardiovascular diseases. METHOD: The current study is intended to explore the cardioprotective effect of ethanolic Moringa oleifera extracts (MOE) leaves loaded into niosomes (MOE-NIO) against DOXinduced cardiotoxicity in rats. MOE niosomes nanoparticles (NIO-NPs) were prepared and characterized by TEM. Seventy male Wistar rats were randomly divided into seven groups: control, NIO, DOX, DOX+MOE, DOX+MOE-NIO, MOE+DOX, and MOE-NIO+DOX. DOX (4 mg/kg, IP) was injected once per week for 4 weeks with daily administration of MOE or MOENIO (250 mg/kg, PO) for 4 weeks; in the sixth and seventh groups, MOE or MOE-NIO (250 mg/kg, PO) was administered one week before DOX injection. Various parameters were assessed in serum and cardiac tissue. Pre and co-treatment with MOE-NIO have mitigated the cardiotoxicity induced by DOX as indicated by serum aspartate aminotransferase (AST), creatine kinase - MB(CK-MB) and lactate dehydrogenase (LDH), cardiac Troponin 1(cTn1) and lipid profile. MOE-NIO also alleviated lipid peroxidation (MDA), nitrosative status (NO), and inflammatory markers levels; myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-α) obtained in DOX-treated animals. Additionally, ameliorated effects have been recorded in glutathione content and superoxide dismutase activity. MOE-NIO effectively neutralized the DOXupregulated nuclear factor kappa B (NF-kB) and p38 mitogen-activated protein kinases (p38 MAPK), and DOX-downregulated nuclear factor-erythroid 2-related factor 2 (Nrf2) expressions in the heart. RESULTS: It is concluded that pre and co-treatment with MOE-NIO could protect the heart against DOX-induced cardiotoxicity by suppressing numerous pathways including oxidative stress, inflammation, and apoptosis and by the elevation of tissue antioxidant status. CONCLUSION: Thus, it may be reasonable to suggest that pre and co-treatment with MOE-NIO can provide a potential cardioprotective effect when doxorubicin is used in the management of carcinoma.

3.
J Aquat Anim Health ; 36(2): 164-180, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38425180

ABSTRACT

OBJECTIVE: During Egypt's hot summer season, Aeromonas veronii infection causes catastrophic mortality on Nile Tilapia Oreochromis niloticus farms. Egypt is ranked first in aquaculture production in Africa, sixth in aquaculture production worldwide, and third in global tilapia production. This study aimed to investigate, at the molecular level, the early innate immune responses of Nile Tilapia to experimental A. veronii infection. METHODS: The relative gene expression, co-expression clustering, and correlation of four selected immune genes were studied by quantitative real-time polymerase chain reaction in four organs (spleen, liver, gills, and intestine) for up to 72 h after a waterborne A. veronii challenge. The four genes studied were nucleotide-binding oligomerization domain 1 (NOD1), lipopolysaccharide-binding protein (LBP), natural killer-lysin (NKL), and interleukin-1 beta (IL-1ß). RESULT: The four genes showed significant transcriptional upregulation in response to infection. At 72 h postchallenge, the highest NOD1 and IL-1ß expression levels were recorded in the spleen, whereas the highest LBP and NKL expression levels were found in the gills. Pairwise distances of the data points and the hierarchical relationship showed that NOD1 clustered with IL-1ß, whereas LBP clustered with NKL; both genes within each cluster showed a significant positive expression correlation. Tissue clustering indicated that the responses of only the gill and intestine exhibited a significant positive correlation. CONCLUSION: The results suggest that NOD1, LBP, NKL, and IL-1ß genes play pivotal roles in the early innate immune response of Nile Tilapia to A. veronii infection, and the postinfection expression profile trends of these genes imply tissue-/organ-specific responses and synchronized co-regulation.


Subject(s)
Aeromonas veronii , Cichlids , Fish Diseases , Gene Expression Regulation , Gram-Negative Bacterial Infections , Immunity, Innate , Animals , Fish Diseases/immunology , Fish Diseases/microbiology , Cichlids/immunology , Cichlids/genetics , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , Aeromonas veronii/genetics , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Fish Proteins/genetics , Transcriptome
4.
Fish Shellfish Immunol ; 144: 109248, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030028

ABSTRACT

Columnaris disease continues to inflict substantial losses among freshwater cultured species since its first description one hundred years ago. The experimental and anecdotal evidence suggests an expanded range and rising virulence of columnaris worldwide due to the warming global climate. The channel catfish (Ictalurus punctatus) are particularly vulnerable to columnaris. A recently developed live attenuated vaccine (17-23) for Flavobacterium columnare (now Flavobacterium covae sp. nov.) demonstrated superior protection for vaccinated catfish against genetically diverse columnaris isolates. In this study, we aimed to elucidate the molecular mechanisms and patterns of immune evasion and host manipulation linked to virulence by comparing gene expression changes in the host after the challenge with a virulent (BGSF-27) or live attenuated F. covae sp. nov. vaccine (17-23). Thirty-day-old fry were accordingly challenged with either virulent or vaccine isolates. Gill tissues were collected at 0 h (control), 1 h, and 2 h post-infection, which are two critical time points in early host-pathogen interactions. Transcriptome profiling of the gill tissues revealed a larger number (518) of differentially expressed genes (DEGs) in vaccine-exposed fish than those exposed to the virulent pathogen (321). Pathway analyses suggested potent suppression of early host immune responses by the virulent isolate through a higher expression of nuclear receptor corepressors (NCoR) responsible for antagonizing macrophage and T-cell signaling. Conversely, in vaccinated fry, we observed induction of Ca2+/calmodulin-dependent protein kinase II (CAMKII), responsible for clearing NCoR, and commensurate up-regulation of transcription factor AP-1 subunits, c-Fos, and c-Jun. As in mammalian systems, AP-1 expression was connected with a broad immune activation in vaccinated fry, including induction of CC chemokines, proteinases, iNOS, and IL-12b. Relatedly, divergent expression patterns of Src tyrosine kinase Lck, CD44, and CD28 indicated a delay or suppression of T-cell adhesion and activation in fry exposed to the virulent isolate. Broader implications of these findings will be discussed. The transcriptomic differences between virulent and attenuated bacteria may offer insights into how the host responds to the vaccination or infection and provide valuable knowledge to understand the early immune mechanisms of columnaris disease in aquaculture.


Subject(s)
Fish Diseases , Flavobacteriaceae Infections , Ictaluridae , Animals , Vaccines, Attenuated , Flavobacterium/physiology , Mammals
5.
Neurochem Res ; 49(4): 919-934, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38114728

ABSTRACT

The growing prevalence of aged sleep-deprived nations is turning into a pandemic state. Acute sleep deprivation (SD) accompanies aging, changing the hippocampal cellular pattern, neurogenesis pathway expression, and aggravating cognitive deterioration. The present study investigated the ability of Near Infra Red (NIR) light laser to ameliorate cognitive impairment induced by SD in young and senile rats. Wistar rats ≤ 2 months (young) and ≥ 14 months (senile) were sleep-deprived for 72 h with or without transcranial administration of NIR laser of 830 nm. Our results showed that NIR photobiomodulation (PBM) attenuated cognitive deterioration made by SD in young, but not senile rats, while both sleep-deprived young and senile rats exhibited decreased anxiety (mania)-like behavior in response to PBM. NIR PBM had an inhibitory effect on AChE, enhanced the production of ACh, attenuated ROS, and regulated cell apoptosis factors such as Bax and Bcl-2. NIR increased mRNA expression of BDNF and GLP-1 in senile rats, thus facilitating neuronal survival and differentiation. The present findings also revealed that age exerts an additive factor to the cellular assaults produced by SD where hippocampal damages made in 2-month rats were less severe than those of the aged one. In conclusion, NIR PBM seems to promote cellular longevity of senile hippocampal cells by combating ROS, elevating neurotrophic factors, thus improving cognitive performance. The present findings provide NIR as a possible candidate for hippocampal neuronal insults accompanying aging and SD.


Subject(s)
Brain-Derived Neurotrophic Factor , Sleep Deprivation , Rats , Animals , Sleep Deprivation/complications , Brain-Derived Neurotrophic Factor/metabolism , Reactive Oxygen Species/metabolism , Rats, Wistar , Glucagon-Like Peptide 1/metabolism , Sleep, REM , Hippocampus/metabolism , Transcription Factors/metabolism
6.
Behav Brain Res ; 458: 114731, 2024 02 26.
Article in English | MEDLINE | ID: mdl-37898350

ABSTRACT

Insufficient sleep is associated with impaired hypothalamic activity and declined attentional performance. In this study, alterations in the hypothalamus of REM sleep-deprived (SD) young and aged rats, and the modulatory effect of near-infrared (NIR) laser were investigated. Forty-eight male Wistar rats (24 young at 2 months and 24 senile at 14 months) were divided into three groups: the control, the SD group subjected to 72 hr of sleep deprivation, and the transcranial-NIR laser-treated (TLT) group subjected to SD for 72 hr and irradiated with 830 nm laser. The hypothalamic levels of oxidative stress, inflammatory biomarkers, antioxidant enzymes, mitochondrial cytochrome C oxidase (CCO), apoptotic markers (BAX, BCL-2), and neuronal survival-associated genes (BDNF, GLP-1) were evaluated. Furthermore, the hypothalamic tissue alterations were analyzed via histological examination. The results revealed that TLT treatment has enhanced the antioxidant status, prevented oxidative insults, suppressed neuroinflammation, regulated CCO activity, reduced apoptotic markers, and tuned the survival genes (BDNF & GLP-1) in hypothalamic tissue of SD young and aged rats. Microscopically, TLT treatment has ameliorated the SD-induced alterations and restored the normal histological features of hypothalamus tissue. Moreover, the obtained data showed that SD and NIR laser therapy are age-dependent. Altogether, our findings emphasize the age-dependent adverse effects of SD on the hypothalamus and suggest the use of low-laser NIR radiation as a potential non-invasive and therapeutic approach against SD-induced adverse effects in young and aged animals.


Subject(s)
Antioxidants , Brain-Derived Neurotrophic Factor , Rats , Male , Animals , Antioxidants/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Rats, Wistar , Hypothalamus/metabolism , Sleep Deprivation/complications , Glucagon-Like Peptide 1
7.
Open Vet J ; 13(10): 1239-1250, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38027396

ABSTRACT

Background: Ultrasonography had diagnostic importance in the evaluation of different diseases in buffaloes, including cardiovascular diseases. Aim: The current work describes the normal echocardiographic findings in healthy buffaloes, along with establishing reference values for echocardiographic dimensions for both sides of the heart, i.e., left and right ones. Methods: About 30 healthy adult buffaloes that belonged to private farms in Assiut, Egypt, were included in this study. Each animal underwent a complete clinical evaluation as well as hematological analyses, lipid profile indices, liver functions, cardio-thoracic radiography, and echocardiography to confirm no diseased conditions were detected. The study was conducted on healthy buffaloes (n = 30) in Assiut Governorate, Egypt. Results: The obtained results reported healthy buffaloes with normal clinical findings as well as indices of blood pictures and serum biochemicals that were within the reference intervals. Radiography revealed a free reticulum and a well-defined diaphragm. The heart was seen as a typical radio-opaque organ. Ultrasonographically, using grayscale B-mode and M-mode, the heart was commonly imaged from the left fourth intercostal space. Different echocardiographic views were described, including the four chamber view, i.e., right atrium (RA), right ventricle (RV), tricuspid valve (TCV), left atrium, left ventricle, mitral valve, and interventricular septum (IVS), and the right ventricular outflow tract, i.e., RA, TCV, RV, pulmonary artery (PA), and pulmonary valve. Cross sections in each of the apex and base of the heart were described. Echocardiographic dimensions during cardiac diastole and systole, including diameters and wall thickness of each of the atria and ventricles, were demonstrated. Interventricular septal thickness wall thickness as well as diameters of the aorta and PA, were stated. Conclusion: The work tried to put reference values on the normal echocardiographic dimensions using 2-D B-mode gray scale ultrasonography in healthy adult buffaloes. These echocardiographic reference dimensions with normal echocardiographic imaging will be very helpful in enhancing the diagnostic efficacy of ultrasounds for recognizing abnormal findings related to cardiac disorders.


Subject(s)
Buffaloes , Heart , Animals , Diastole , Heart/diagnostic imaging , Echocardiography/veterinary , Heart Ventricles
8.
Sci Rep ; 13(1): 19712, 2023 11 12.
Article in English | MEDLINE | ID: mdl-37953299

ABSTRACT

Fibromyalgia (FM) is a chronic disorder characterized by widespread musculoskeletal pain, fatigue, and cognitive impairment. Despite the availability of various treatment options, FM remains a challenging condition to manage. In the present study, we investigated the efficacy of formulated nanodispersions of lutein and beta-carotene in treating FM-related symptoms induced by reserpine in female Wistar rats. Several techniques have been implemented to assess this efficacy at various levels, including biochemical, bioelectrical, and behavioral. Namely, oxidative stress markers, monoamine levels, electrocorticography, pain threshold test, and open field test were conducted on control, FM-induced, and FM-treated groups of animals. Our results provided compelling evidence for the efficacy of carotenoid nanodispersions in treating FM-related symptoms. Specifically, we found that the dual action of the nanodispersion, as both antioxidant and antidepressant, accounted for their beneficial effects in treating FM. With further investigation, nano-carotenoids and particularly nano-lutein could potentially become an effective alternative treatment for patients with FM who do not respond to current treatment options.


Subject(s)
Fibromyalgia , beta Carotene , Humans , Female , Rats , Animals , Lutein/pharmacology , Lutein/therapeutic use , Fibromyalgia/drug therapy , Rats, Wistar , Carotenoids
9.
Photochem Photobiol Sci ; 22(12): 2891-2904, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37917308

ABSTRACT

Photobiomodulation (PBM) of deep brain structures through transcranial infrared irradiation might be an effective treatment for Parkinson's disease (PD). However, the mechanisms underlying this intervention should be elucidated to optimize the therapeutic outcome and maximize therapeutic efficacy. The present study aimed at investigating the oxidative stress-related parameters of malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH) and the enzymatic activities of sodium-potassium-ATPase (Na+, K+-ATPase), Acetylcholinesterase (AChE), and monoamine oxidase (MAO) and monoamine levels (dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the midbrain and striatum of reserpine-induced PD in an animal model treated with PBM. Furthermore, the locomotor behavior of the animals has been determined by the open field test. Animals were divided into three groups; the control group, the PD-induced model group, and the PD-induced model treated with the PBM group. Non-invasive treatment of animals for 14 days with 100 mW, 830 nm laser has demonstrated successful attainment in the recovery of oxidative stress, and enzymatic activities impairments induced by reserpine (0.2 mg/kg) in both midbrain and striatum of adult male Wistar rats. PBM also improved the decrease in DA, NE, and 5-HT in the investigated brain regions. On a behavioral level, animals showed improvement in their locomotion activity. These findings have shed more light on some mechanisms underlying the treatment potential of PBM and displayed the safety, easiness, and efficacy of PBM treatment as an alternative to pharmacological treatment for PD.


Subject(s)
Low-Level Light Therapy , Parkinsonian Disorders , Rats , Male , Animals , Reserpine/pharmacology , Rats, Wistar , Serotonin , Acetylcholinesterase , Mesencephalon , Dopamine , Adenosine Triphosphatases , Disease Models, Animal
10.
Life Sci ; 334: 122257, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37949207

ABSTRACT

Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Parkinson Disease , Humans , Neurodegenerative Diseases/metabolism , Mitochondria/metabolism , Oxidative Stress , Alzheimer Disease/drug therapy , Parkinson Disease/metabolism
11.
BMC Vet Res ; 19(1): 139, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37658349

ABSTRACT

BACKGROUND: The post-parturient period in goat had marked changes in an animal's endocrine and metabolic status as well as by reduction in feed intake when the nutrient demand for impending lactogenesis was increasing. The current study aimed to monitor the residues of oxytetracycline in Baladi goat milk and their hazards on public health as well as the time required until complete disappearance of this medicament from milk through following up periods included 0, 12, 24, 36, 48, 60, 72, 84, 96 and 120 h in post-kidding goat following intrauterine application of oxytetracycline. The study also compared between the efficacy of oxytetracycline only, oxytetracycline with oxytocin, or oxytetracycline with GnRH, through monitoring the clinical findings and haematological pictures at days 0, 5 and 7 post-partum as well as studying the changes in numbers and size of follicles at days 15, 30 and 45 postpartum after different treatments strategies in different groups i.e. Control healthy goat (Contgr), Oxytetracycline treated goat (Oxytetgr), Oxytetracycline-oxytocin treated goat (Oxytet-Oxytogr) and Oxytetracycline-GnRH treated goat (Oxytet-GnRHgr). The study was carried out on clinically healthy Baladi goats (n = 40) that gave birth recently. They were divided into 4 equal groups (n = 10 goats for each); Contgr which received no medication after birth, Oxytetgr which administrated oxytetracycline tablets intrauterine at day of birth, Oxytet-Oxytogr which treated by oxytetracycline tablets intrauterine at day of birth followed by oxytocin injection at 3rd day after birth, and Oxytet-GnRHgr which treated by oxytetracycline tablets intrauterine at day of birth followed by GNRH injection at 3rd day after birth. RESULTS AND CONCLUSIONS: The study concluded the highest oxytetracyclines residues in goats' milk were reported after 36 h following intrauterine oxytetracycline application where complete disappearance of oxytetracyclines residues in goats' milk required 120 h elapsed after intrauterine oxytetracycline application in which the goats milk became safe for human consumption. The study also reported powerful influence of the applied variable therapeutic regimens on post-partum ovarian resumption through clear significant variations in numbers and sizes of follicles either between different goats' groups within the same day, or between days 15, 30 and 45 post-partum within each independent goat group.


Subject(s)
Milk , Oxytetracycline , Animals , Humans , Female , Oxytocin/therapeutic use , Oxytetracycline/therapeutic use , Gonadotropin-Releasing Hormone , Goats , Postpartum Period , Tablets
12.
Int J Biol Macromol ; 253(Pt 6): 127045, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37776934

ABSTRACT

This study aims to address the issue of environmental pollution caused by non-biodegradable petroleum-based food packaging by exploring the application of biodegradable films. Film casting was employed to fabricate food packaging films from chitosan (CS) and polyvinyl alcohol (PVA) polymers blended with moringa extract (MoE) and various concentrations of magnesium oxide nanoparticles (MgO NPs). The films were characterized through multiple techniques, including UV spectroscopy, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), and Fourier-transform Infrared Spectroscopy (FTIR). The study investigated the physicomechanical properties, water solubility, water vapor transmission rate, oxygen permeability, migration test, biodegradability, contact angle, anti-fogging, antibacterial and antifungal activity, and application of the films for food packaging. The results showed that blending CS/PVA films with MoE and MgO NPs significantly improved their mechanical properties. The highest tensile strength of 98 MPa was observed in the CPMMgO-0.5 film. The solubility of the films was low, with CPMMgO-0 and CPMMgO-0.25 demonstrating the lowest solubility as weight decreased by 3.41 % and 3.47 %, respectively. The water vapor transmission rate and oxygen permeability decreased with increasing MgO NP concentrations, with the CPMMgO-0.5 film exhibiting the lowest values. The films also demonstrated good biodegradability, anti-fogging ability, antibacterial and antifungal activity, and low water solubility, enabling bead encapsulation over 14 days in good condition. Moreover, the thermal stability of the films was improved, extending the shelf life of bread. Therefore, the fabricated films provide a promising alternative to non-degradable plastic packaging, which heavily contributes to environmental pollution.


Subject(s)
Chitosan , Nanoparticles , Chitosan/chemistry , Food Packaging/methods , Magnesium Oxide , Antifungal Agents , Steam , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Oxygen
13.
J Aquat Anim Health ; 35(3): 187-198, 2023 09.
Article in English | MEDLINE | ID: mdl-37749801

ABSTRACT

OBJECTIVE: The first objective of the study aimed to detect the presence of Lactococcus petauri, L. garvieae, and L. formosensis in fish (n = 359) and environmental (n = 161) samples from four lakes near an affected fish farm in California during an outbreak in 2020. The second objective was to compare the virulence of the Lactococcus spp. in Rainbow Trout Oncorhynchus mykiss and Largemouth Bass Micropterus salmoides. METHODS: Standard bacterial culture methods were used to isolate Lactococcus spp. from brain and posterior kidney of sampled fish from the four lakes. Quantitative PCR (qPCR) was utilized to detect Lactococcus spp. DNA in fish tissues and environmental samples from the four lakes. Laboratory controlled challenges were conducted by injecting fish intracoelomically with representative isolates of L. petauri (n = 17), L. garvieae (n = 2), or L. formosensis (n = 4), and monitored for 14 days postchallenge (dpc). RESULT: Lactococcus garvieae was isolated from the brains of two Largemouth Bass in one of the lakes. Lactococcus spp. were detected in 14 fish (8 Bluegills Lepomis macrochirus and 6 Largemouth Bass) from 3 out of the 4 lakes using a qPCR assay. Of the collected environmental samples, all 4 lakes tested positive for Lactococcus spp. in the soil samples, while 2 of the 4 lakes tested positive in the water samples through qPCR. Challenged Largemouth Bass did not show any signs of infection postinjection throughout the challenge period. Rainbow Trout infected with L. petauri showed clinical signs within 3 dpc and presented a significantly higher cumulative mortality (62.4%; p < 0.0001) at 14 dpc when compared to L. garvieae (0%) and L. formosensis (7.5%) treatments. CONCLUSION: The study suggests that qPCR can be used for environmental DNA monitoring of Lactococcus spp. and demonstrates virulence diversity between the etiological agents of piscine lactococcosis.


Subject(s)
Fish Diseases , Gram-Positive Bacterial Infections , Oncorhynchus mykiss , Animals , Virulence , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Bacterial Infections/microbiology , Lakes , Lactococcus/genetics , Fish Diseases/epidemiology , Fish Diseases/microbiology
14.
Iran J Basic Med Sci ; 26(9): 1068-1075, 2023.
Article in English | MEDLINE | ID: mdl-37605718

ABSTRACT

Objectives: Febrile seizures (FS) are the most common neurological disorder at a young age in humans. Animal models of hyperthermia-induced seizures provide a tool to investigate the underlying mechanisms of FS related to epilepsy development and its co-morbidities. The present study investigates the alterations in monoamine neurotransmitters in two brain areas: the cortex and the hippo-campus in animals subjected to prolonged FS at their immature age. Materials and Methods: Experimental animals were divided into three groups: cage-control group (NHT-NFS), positive hyperthermic control group (HT-NFS), and the hyperthermia-induced febrile seizure group (HT-FS). Each group was further subdivided into young (Y) and adult (A) groups. Results: There were significant changes in the cortical and hippocampal serotonin neurotransmitters that were persistent until adulthood. However, the changes in the two other neurotransmitters, norepinephrine and dopamine, were transient and have been recovered in adulthood. Conclusion: The present study sheds more light on the importance of monoamine neurotransmitters in epileptogenesis following FS.

15.
BMC Vet Res ; 19(1): 92, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37488512

ABSTRACT

BACKGROUND: According to reports, the majority of domesticated species exhibited uterine torsion. It was occasionally noted as a cause of dystocia in buffaloes. The uterus might twist more frequently late in pregnancy because of certain animal traits. The current research monitored the clinical findings and laboratory assays associated with uterine torsion cases in pregnant buffalo-cows through comparing between normal labored buffalo-cows (Norm-Labgr; n = 20), mechanically corrected uterine torsed animals without medicament interference (UtrTorsgr; n = 160), and mechanically corrected uterine torsed animals with medicament interference (UtrTors-Medgr; n = 40) through focusing on placental characterization, calves body weight, milk constituents and milk somatic cell count (SCC) in normal labored buffaloes and uterine torsed ones. Through clinical and laboratory investigations of these buffaloes (N = 220) had been conducted 3 times; 7 h pre-calving and post calving (Post uterine correction) i.e. 48 and 96 h. Uterine torsion prevalence parameters, placental characterization, calves body weight, milk constituents and milk somatic cell counts were evaluated in normal labored buffaloes and uterine torsed ones. RESULTS AND CONCLUSIONS: The study concluded pre-calving remarkable variations in clinical findings, leukogram picture, calf birth weight and some placental characterization parameters between Norm-Labgr and each of UtrTorsgr and UtrTors-Medgr whereas these variations disappeared post-partum as a result to either only mechanical correction or mechanical correction plus medicaments interference. No pre-or post-calving significant changes between UtrTorsgr and UtrTors-Medgr except for the abnormal clinical findings were more representative in UtrTors-Medgr than those in UtrTorsgr particularly pre-calving. The applied pre-calving therapeutic regimen including dexamethasone-prostaglandin-receptal combination had a powerful potential efficacy that induced vaginal delivery of calves in UtrTors-Medgr as well as prepartum mechanical correction of torsed uterus approved higher efficacy in UtrTorsgr. The applied prepartum mechanical correction of torsed uterus and/or pre-calving therapeutic regimen as well as subsequent post-calving, post uterine correction applied medicament treatment accelerated rapid recovery of affected buffalo-cows through achieving rapid restoring of their physiological parameters. Buffalo-cow's milk composition, milk pH and milk SCC were not affected whereas no significant variations were reported between Norm-Labgr, UtrTorsgr and UtrTors-Medgr.


Subject(s)
Bison , Buffaloes , Pregnancy , Cattle , Animals , Female , Buffaloes/physiology , Buserelin , Placenta , Egypt , Uterus , Milk , Dexamethasone/therapeutic use , Body Weight , Lactation
16.
Open Vet J ; 13(5): 523-531, 2023 05.
Article in English | MEDLINE | ID: mdl-37304600

ABSTRACT

Background: Organic egg is among the most common organic foods offered for sale in Egyptian markets in recent years, and consumers buy them at a higher price because they believe organic eggs are safer and have superior nutritional value than conventional eggs. Aim: The present work aimed to monitor antimicrobial residues in brown table eggs, whether conventional or organic type, in Aswan governorate markets and assessed their physical and chemical quality and their public health hazards. Methods: Brown table egg samples (n = 400 total) were randomly selected in the present study, in which they represented two equal groups (n = 200 each) including conventional eggs and organic eggs. Eggs were collected from different retail stores in the Aswan governorate, Egypt. Egg samples were subjected to thorough physical and chemical quality evaluation as well as an assessment of antimicrobial residues. Results: The results reported that organic eggs were cleaner and had a better odor, less blood, and meat spots, but smaller with more shell cracks than conventional eggs. Chemical analysis of some nutrient contents in the egg yolk revealed significantly higher nutritive values of organic eggs than that of conventional ones as the organic eggs contain significantly higher levels of vitamin A and vitamin D/D3 and significantly lower values of cholesterol, calcium, magnesium, and zinc than those in conventional eggs. Disc diffusion assay has been used for monitoring antimicrobial residues in egg samples. The results have shown that all examined organic eggs were free from antimicrobial residues, while 12% and 8% of conventional egg yolk and white were positive for antimicrobial residues, respectively. Conclusion: The study concludes the higher nutritive value of organic eggs compared with the conventional type because of their significantly higher contents of vitamins A and D and their significantly lower contents of cholesterol. Moreover, organic eggs were free from antimicrobial residues which maximizes their public health benefits..


Subject(s)
Anti-Infective Agents , Public Health , Animals , Meat , Egypt
17.
Metab Brain Dis ; 38(5): 1513-1529, 2023 06.
Article in English | MEDLINE | ID: mdl-36847968

ABSTRACT

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide and represents a challenge for clinicians. The present study aims to investigate the effects of cerebrolysin and/or lithium on the behavioral, neurochemical and histopathological alterations induced by reserpine as a model of PD. The rats were divided into control and reserpine-induced PD model groups. The model animals were further divided into four subgroups: rat PD model, rat PD model treated with cerebrolysin, rat PD model treated with lithium and rat PD model treated with a combination of cerebrolysin and lithium. Treatment with cerebrolysin and/or lithium ameliorated most of the alterations in oxidative stress parameters, acetylcholinesterase and monoamines in the striatum and midbrain of reserpine-induced PD model. It also ameliorated the changes in nuclear factor-kappa and improved the histopathological picture induced by reserpine. It could be suggested that cerebrolysin and/or lithium showed promising therapeutic potential against the variations induced in the reserpine model of PD. However, the ameliorating effects of lithium on the neurochemical, histopathological and behavioral alterations induced by reserpine were more prominent than those of cerebrolysin alone or combined with lithium. It can be concluded that the antioxidant and anti-inflammatory effects of both drugs played a significant role in their therapeutic potency.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Rats , Male , Animals , Reserpine/pharmacology , Rats, Wistar , Lithium , Acetylcholinesterase , Disease Models, Animal
18.
J Fluoresc ; 33(4): 1631-1639, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36808529

ABSTRACT

Olive oils are more expensive compared with other vegetable oils. Therefore, adulterating such expensive oil is prevalent. The traditional methods for olive oil adulteration detection are complex and require pre-analysis sample preparation. Therefore, simple and precise alternative techniques are required. In the present study, the Laser-induced fluorescence (LIF) technique was implemented for detecting alteration and adulteration of olive oil mixed with sunflower or corn oil based on the post-heating emission characteristics. Diode-pumped solid-state laser (DPSS, λ = 405 nm) was employed for excitation and the fluorescence emission was detected via an optical fiber connected to a compact spectrometer. The obtained results revealed alterations in the recorded chlorophyll peak intensity due to olive oil heating and adulteration. The correlation of the experimental measurements was evaluated via partial least-squares regression (PLSR) with an R-squared value of 0.95. Moreover, the system performance was evaluated using receiver operating characteristics (ROC) with a maximum sensitivity of 93%.


Subject(s)
Food Contamination , Heating , Olive Oil/analysis , Food Contamination/analysis , Plant Oils/analysis , Least-Squares Analysis
19.
Front Cell Infect Microbiol ; 13: 1093393, 2023.
Article in English | MEDLINE | ID: mdl-36816589

ABSTRACT

Flavobacterium columnare causes columnaris disease in freshwater fish in both natural and aquaculture settings. This disease is often lethal, especially when fish population density is high, and control options such as vaccines are limited. The type IX secretion system (T9SS) is required for F. columnare virulence, but secreted virulence factors have not been fully identified. Many T9SS-secreted proteins are predicted peptidases, and peptidases are common virulence factors of other pathogens. T9SS-deficient mutants, such as ΔgldN and ΔporV, exhibit strong defects in secreted proteolytic activity. The F. columnare genome has many peptidase-encoding genes that may be involved in nutrient acquisition and/or virulence. Mutants lacking individual peptidase-encoding genes, or lacking up to ten peptidase-encoding genes, were constructed and examined for extracellular proteolytic activity, for growth defects, and for virulence in zebrafish and rainbow trout. Most of the mutants retained virulence, but a mutant lacking 10 peptidases, and a mutant lacking the single peptidase TspA exhibited decreased virulence in rainbow trout fry, suggesting that peptidases contribute to F. columnare virulence.


Subject(s)
Fish Diseases , Flavobacteriaceae Infections , Oncorhynchus mykiss , Animals , Virulence , Peptide Hydrolases/metabolism , Zebrafish , Flavobacteriaceae Infections/microbiology , Fish Diseases/microbiology , Virulence Factors/metabolism , Flavobacterium
20.
Sci Rep ; 12(1): 22642, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36587179

ABSTRACT

Metal nanoparticles, in general, and silver nanoparticles (AgNPs), in particular, have been the focus of numerous studies over the last two decades. Recently, the green synthesis of metal nanoparticles has been favored over chemical synthesis due to its low toxicity and easy preparation. The present study aims to investigate the dose-dependent toxicity of green synthesized AgNPs on rats' brains. Thirty-four Wistar male rats were divided into four groups. The first, second, and third groups were administered for 14 days with three different doses (0.5, 5, and 10 mg/kg) of AgNPs, respectively. The fourth group, which served as a control group, was given normal saline for the same period. The toxicity of the green synthesized AgNPs on the cortical and hippocampal levels of the oxidative stress markers (MDA, NO, and GSH) as well as the activity of acetylcholinesterase (AchE) and the monoamine neurotransmitters (DA, NE, and 5H-T) were investigated. AgNPs showed minimal oxidative stress in the cortex and hippocampus for the administered doses. However, AgNPs showed an inhibitory effect on AchE activity in a dose-dependent manner and a decrease in the 5H-T and NE levels. The green synthesized AgNPs showed an ultrastructural change in the cellular membranes of the neurons. The green synthesis of AgNPs has reduced their cytotoxic oxidative effects due to their capping with biologically compatible and boosting molecules such as flavonoids. However, another neurotoxicity was observed in a dose-dependent manner.


Subject(s)
Metal Nanoparticles , Silver , Rats , Animals , Male , Silver/chemistry , Rats, Wistar , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Acetylcholinesterase , Plant Extracts/pharmacology , Brain , Green Chemistry Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...