Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(9): e0239363, 2020.
Article in English | MEDLINE | ID: mdl-32970710

ABSTRACT

BACKGROUND: Healthcare workers around the world are experiencing skin injury due to the extended use of personal protective equipment (PPE) during the COVID-19 pandemic. These injuries are the result of high shear stresses acting on the skin, caused by friction with the PPE. This study aims to provide a practical lubricating solution for frontline medical staff working a 4+ hours shift wearing PPE. METHODS: A literature review into skin friction and skin lubrication was conducted to identify products and substances that can reduce friction. We evaluated the lubricating performance of commercially available products in vivo using a custom-built tribometer. FINDINGS: Most lubricants provide a strong initial friction reduction, but only few products provide lubrication that lasts for four hours. The response of skin to friction is a complex interplay between the lubricating properties and durability of the film deposited on the surface and the response of skin to the lubricating substance, which include epidermal absorption, occlusion, and water retention. INTERPRETATION: Talcum powder, a petrolatum-lanolin mixture, and a coconut oil-cocoa butter-beeswax mixture showed excellent long-lasting low friction. Moisturising the skin results in excessive friction, and the use of products that are aimed at 'moisturising without leaving a non-greasy feel' should be prevented. Most investigated dressings also demonstrate excellent performance.


Subject(s)
Coronavirus Infections/complications , Lubricants/therapeutic use , Personal Protective Equipment/adverse effects , Pneumonia, Viral/complications , Skin/injuries , Adult , Betacoronavirus , Biomechanical Phenomena , COVID-19 , Friction , Humans , Male , Medical Staff , Pandemics , SARS-CoV-2
2.
J Food Eng ; 238: 112-121, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30510347

ABSTRACT

Extrusion has potential advantages over baking in terms of throughput, asset cost and flexibility. However, it is challenging to achieve through extrusion the "light, crispy" texture of a more traditional baked confectionery. This study compares and contrasts for the first time confectionery products produced through these two processes, i.e. baking and extrusion. The microstructural differences are measured using imaging techniques, i.e. Scanning Electron Microscopy (SEM) and X-Ray Tomography (XRT) whereas mechanical characterisation is used to highlight differences in the resulting mechanical properties. Crucial information is presented which shows that the two technologies result in different mechanical properties and microstructures, even if the level of porosity in the two products is kept constant. In addition, confectionery products whether they are produced through baking or extrusion, have irregular geometries. The latter makes mechanical characterisation a real challenge. Therefore this study also presents rigorous methods for measuring true mechanical properties such that meaningful and valid comparisons may be made. The accuracy of the chosen methodologies is verified through experiments using flat and tubular extruded geometries as well as testing the products in various directions. It was concluded that the manufacturing method and, in the case of extrusion, the initial moisture content influences the microstructure and mechanics of confectionery products, both of which have an impact on consumer sensory perception.

SELECTION OF CITATIONS
SEARCH DETAIL
...