Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Bioenerg ; 1858(3): 197-207, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27940020

ABSTRACT

Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the electron transport chain in mammalian mitochondria. Extensive proteomic and structural analyses of complex I from Bos taurus heart mitochondria have shown it comprises 45 subunits encoded on both the nuclear and mitochondrial genomes; 44 of them are different and one is present in two copies. The bovine heart enzyme has provided a model for studying the composition of complex I in other mammalian species, including humans, but the possibility of additional subunits or isoforms in other species or tissues has not been explored. Here, we describe characterization of the complexes I purified from five rat tissues and from a rat hepatoma cell line. We identify a~50kDa isoform of subunit NDUFV3, for which the canonical isoform is only ~10kDa in size. We combine LC-MS and MALDI-TOF mass spectrometry data from two different purification methods (chromatography and immuno-purification) with information from blue native PAGE analyses to show the long isoform is present in the mature complex, but at substoichiometric levels. It is also present in complex I in cultured human cells. We describe evidence that the long isoform is more abundant in both the mitochondria and purified complexes from brain (relative to in heart, liver, kidney and skeletal muscle) and more abundant still in complex I in cultured cells. We propose that the long 50kDa isoform competes with its canonical 10kDa counterpart for a common binding site on the flavoprotein domain of complex I.


Subject(s)
Electron Transport Complex I/genetics , Light-Harvesting Protein Complexes/genetics , Protein Isoforms/genetics , Amino Acid Sequence/genetics , Animals , Binding Sites , Cattle , Electron Transport Complex I/chemistry , Electron Transport Complex I/economics , Electron Transport Complex I/isolation & purification , Humans , Light-Harvesting Protein Complexes/chemistry , Mitochondria, Heart/chemistry , Mitochondria, Heart/genetics , Protein Isoforms/chemistry , Protein Isoforms/isolation & purification , Rats
2.
Proc Natl Acad Sci U S A ; 111(44): 15735-40, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25331896

ABSTRACT

In mitochondria, four respiratory-chain complexes drive oxidative phosphorylation by sustaining a proton-motive force across the inner membrane that is used to synthesize ATP. The question of how the densely packed proteins of the inner membrane are organized to optimize structure and function has returned to prominence with the characterization of respiratory-chain supercomplexes. Supercomplexes are increasingly accepted structural entities, but their functional and catalytic advantages are disputed. Notably, substrate "channeling" between the enzymes in supercomplexes has been proposed to confer a kinetic advantage, relative to the rate provided by a freely accessible, common substrate pool. Here, we focus on the mitochondrial ubiquinone/ubiquinol pool. We formulate and test three conceptually simple predictions of the behavior of the mammalian respiratory chain that depend on whether channeling in supercomplexes is kinetically important, and on whether the ubiquinone pool is partitioned between pathways. Our spectroscopic and kinetic experiments demonstrate how the metabolic pathways for NADH and succinate oxidation communicate and catalyze via a single, universally accessible ubiquinone/ubiquinol pool that is not partitioned or channeled. We reevaluate the major piece of contrary evidence from flux control analysis and find that the conclusion of substrate channeling arises from the particular behavior of a single inhibitor; we explain why different inhibitors behave differently and show that a robust flux control analysis provides no evidence for channeling. Finally, we discuss how the formation of respiratory-chain supercomplexes may confer alternative advantages on energy-converting membranes.


Subject(s)
Electron Transport Complex I/chemistry , Mitochondria, Heart/enzymology , Models, Chemical , NAD/chemistry , Succinic Acid/chemistry , Ubiquinone/chemistry , Animals , Cattle , Electron Transport/physiology , Electron Transport Complex I/metabolism , Kinetics , NAD/metabolism , Oxidation-Reduction , Succinic Acid/metabolism , Ubiquinone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...