Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Type of study
Publication year range
1.
Chemistry ; : e202401565, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864572

ABSTRACT

We present our findings on the on-surface synthesis of polyboroxine molecules derived from boroxine molecules precursors. This process is promoted by oxygen species present on the Au(111) surface: oxygen atoms facilitate the detachment of naphthalene units of trinaphthyl-boroxine molecules and bridge two unsaturated boroxine centers to form a boroxine-O-boroxine chemical motif. X-ray spectroscopic characterization shows that, as the synthesis process proceeds, it progressively tunes the electronic properties of the interface, thus providing a promising route to control the electron level alignment. .

2.
Nanoscale ; 16(2): 734-741, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38086686

ABSTRACT

In the last few years we have observed a breakpoint in the development of graphene-derived technologies, such as liquid phase filtering and their application to electronics. In most of these cases, they imply exposure of the material to solvents and ambient moisture, either in the fabrication of the material or the final device. The present study demonstrates the sensitivity of graphene nanoribbon (GNR) zigzag edges to water, even in extremely low concentrations. We have addressed the unique reactivity of (3,1)-chiral GNR with moisture on Au(111). Water shows a reductive behaviour, hydrogenating the central carbon of the zigzag segments. By combining scanning tunnelling microscopy (STM) with simulations, we demonstrate how their reactivity reaches a thermodynamic limit when half of the unit cells are reduced, resulting in an alternating pattern of hydrogenated and pristine unit cells starting from the terminal segments. Once a quasi-perfect alternation is reached, the reaction stops regardless of the water concentration. The hydrogenated segments limit the electronic conjugation of the GNR, but the reduction can be reversed both by tip manipulation and annealing. Selective tip-induced dehydrogenation allowed the stabilization of radical states at the edges of the ribbons, while the annealing of the sample completely recovered the original, pristine GNR.

5.
Nat Chem ; 14(12): 1451-1458, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36163268

ABSTRACT

Carbon nanostructures with zigzag edges exhibit unique properties-such as localized electronic states and spins-with exciting potential applications. Such nanostructures however are generally synthesized under vacuum because their zigzag edges are unstable under ambient conditions: a barrier that must be surmounted to achieve their scalable integration into devices for practical purposes. Here we show two chemical protection/deprotection strategies, demonstrated on labile, air-sensitive chiral graphene nanoribbons. Upon hydrogenation, the chiral graphene nanoribbons survive exposure to air, after which they are easily converted back to their original structure by annealing. We also approach the problem from another angle by synthesizing a form of the chiral graphene nanoribbons that is functionalized with ketone side groups. This oxidized form is chemically stable and can be converted to the pristine hydrocarbon form by hydrogenation and annealing. In both cases, the deprotected chiral graphene nanoribbons regain electronic properties similar to those of the pristine nanoribbons. We believe both approaches may be extended to other graphene nanoribbons and carbon-based nanostructures.

6.
Nano Lett ; 22(1): 164-171, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34936370

ABSTRACT

Open-shell graphene nanoribbons have become promising candidates for future applications, including quantum technologies. Here, we characterize magnetic states hosted by chiral graphene nanoribbons (chGNRs). The substitution of a hydrogen atom at the chGNR edge by a ketone effectively adds one pz electron to the π-electron network, producing an unpaired π-radical. A similar scenario occurs for regular ketone-functionalized chGNRs in which one ketone is missing. Two such radical states can interact via exchange coupling, and we study those interactions as a function of their relative position, which includes a remarkable dependence on the chirality, as well as on the nature of the surrounding ribbon, that is, with or without ketone functionalization. Besides, we determine the parameters whereby this type of system with oxygen heteroatoms can be adequately described within the widely used mean-field Hubbard model. Altogether, we provide insight to both theoretically model and devise GNR-based nanostructures with tunable magnetic properties.

7.
ACS Nano ; 15(10): 16552-16561, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34633170

ABSTRACT

The advent of on-surface chemistry under vacuum has vastly increased our capabilities to synthesize carbon nanomaterials with atomic precision. Among the types of target structures that have been synthesized by these means, graphene nanoribbons (GNRs) have probably attracted the most attention. In this context, the vast majority of GNRs have been synthesized from the same chemical reaction: Ullmann coupling followed by cyclodehydrogenation. Here, we provide a detailed study of the growth process of five-atom-wide armchair GNRs starting from dibromoperylene. Combining scanning probe microscopy with temperature-dependent XPS measurements and theoretical calculations, we show that the GNR growth departs from the conventional reaction scenario. Instead, precursor molecules couple by means of a concerted mechanism whereby two covalent bonds are formed simultaneously, along with a concomitant dehydrogenation. Indeed, this alternative reaction path is responsible for the straight GNR growth in spite of the initial mixture of reactant isomers with irregular metal-organic intermediates that we find. The provided insight will not only help understanding the reaction mechanisms of other reactants but also serve as a guide for the design of other precursor molecules.

8.
Phys Chem Chem Phys ; 23(18): 10845-10851, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33908516

ABSTRACT

The on-surface synthesis of non-planar nanographenes is a challenging task. Herein, with the aid of bond-resolving scanning tunneling microscopy (BRSTM) and density functional theory (DFT) calculations, we present a systematic study aiming at the fabrication of corannulene-based nanographenes via intramolecular cyclodehydrogenation on a Au(111) surface. The formation of non-planar targeted products is confirmed to be energetically unfavorable compared to the formation of planar/quasi-planar undesired competing monomer products. In addition, the activation of intermolecular coupling further inhibits the formation of the final targeted product. Although it was not possible to access the corannulene moiety by means of on-surface synthesis, partial cyclodehydrogenation of the molecular precursors was demonstrated.

9.
ACS Nano ; 15(3): 5610-5617, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33656868

ABSTRACT

Nanostructured graphene has been widely studied in recent years due to the tunability of its electronic properties and its associated interest for a variety of fields, such as nanoelectronics and spintronics. However, many of the graphene nanostructures of technological interest are synthesized under ultrahigh vacuum, and their limited stability as they are brought out of such an inert environment may compromise their applicability. In this study, a combination of bond-resolving scanning probe microscopy (BR-SPM), along with theoretical calculations, has been employed to study (3,1)-chiral graphene nanoribbons [(3,1)-chGNRs] that were synthesized on a Au(111) surface and then exposed to oxidizing environments. Exposure to the ambient atmosphere, along with the required annealing treatment to desorb a sufficiently large fraction of contaminants to allow for its postexposure analysis by BR-SPM, revealed a significant oxidation of the ribbons, with a dramatically disruptive effect on their electronic properties. More controlled experiments avoiding high temperatures and exposing the ribbons only to low pressures of pure oxygen show that also under these more gentle conditions the ribbons are oxidized. From these results, we obtain additional insights into the preferential reaction sites and the nature of the main defects that are caused by oxygen. We conclude that graphene nanoribbons with zigzag edge segments require forms of protection before they can be used in or transferred through ambient conditions.

10.
ACS Nano ; 15(3): 4937-4946, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33630588

ABSTRACT

The combination of alkyne and halogen functional groups in the same molecule allows for the possibility of many different reactions when utilized in on-surface synthesis. Here, we use a pyrene-based precursor with both functionalities to examine the preferential reaction pathway when it is heated on an Au(111) surface. Using high-resolution bond-resolving scanning tunneling microscopy, we identify multiple stable intermediates along the prevailing reaction pathway that initiate with a clearly dominant Glaser coupling, together with a multitude of other side products. Importantly, control experiments with reactants lacking the halogen functionalization reveal the Glaser coupling to be absent and instead show the prevalence of non-dehydrogenative head-to-head alkyne coupling. We perform scanning tunneling spectroscopy on a rich variety of the product structures obtained in these experiments, providing key insights into the strong dependence of their HOMO-LUMO gaps on the nature of the intramolecular coupling. A clear trend is found of a decreasing gap that is correlated with the conversion of triple bonds to double bonds via hydrogenation and to higher levels of cyclization, particularly with nonbenzenoid product structures. We rationalize each of the studied cases.

11.
Nanoscale Adv ; 3(8): 2351-2358, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-36133758

ABSTRACT

Combining on-surface synthetic methods with the power of scanning tunneling microscopy to characterize novel materials at the single molecule level, we show how to steer the reactivity of one anthracene-based precursor towards different product nanostructures. Whereas using a Au(111) surface with three-fold symmetry results in the dominant formation of a starphene derivative, the two-fold symmetry of a reconstructed Au(110) surface allows the selective growth of non-benzenoid linear conjugated polymers. We further assess the electronic properties of each of the observed product structures via tunneling spectroscopy and DFT calculations, altogether advancing the synthesis and characterization of molecular structures of notable scientific interest that have been only scarcely investigated to date, as applies both to starphenes and to non-benzenoid conjugated polymers.

12.
J Phys Chem Lett ; 11(15): 5902-5907, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32633516

ABSTRACT

We report an on-surface synthesis of five-membered carbon ring via a [4 + 1] annulation reaction, starting from a simple terminal alkynyl bromide, 4-(bromoethynyl)biphenyl, on Ag(110). The combination of scanning tunneling microscopy (STM), synchrotron radiation photoemission spectroscopy (SRPES), and density functional theory (DFT) calculations unravel the reaction pathway and mechanism. Three basic reaction steps are involved, successively including the formation of alkynyl-Ag-alkynyl bridged organometallic dimer, the generation of alkylidene carbene intermediate, and the final [4 + 1] annulation involving a hydrogen transfer step.

13.
Chem Commun (Camb) ; 56(61): 8659-8662, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32602478

ABSTRACT

We report a multi-step on-surface synthesis strategy. The first step consists in the surface-supported synthesis of metal-organic complexes, which are subsequently used to steer on-surface alkyne coupling reactions. In addition, we analyze and compare the electronic properties of the different coupling motifs obtained.

14.
Chem Commun (Camb) ; 56(19): 2833-2836, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32065182

ABSTRACT

The self-assembly of leucoquinizarin molecules on Au(111) surfaces is shown to be characterized by the molecules mostly being in their keto-enolic tautomeric form, with evidence of their temporary switching to other tautomeric forms. This reveals a metastable chemistry of the assembled molecules, to be considered for their possible employment in the formation of more complex hetero-organic interfaces.

15.
ACS Nano ; 14(4): 4499-4508, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32101402

ABSTRACT

We extensively characterize the electronic structure of ultranarrow graphene nanoribbons (GNRs) with armchair edges and zigzag termini that have five carbon atoms across their width (5-AGNRs), as synthesized on Au(111). Scanning tunneling spectroscopy measurements on the ribbons, recorded on both the metallic substrate and a decoupling NaCl layer, show well-defined dispersive bands and in-gap states. In combination with theoretical calculations, we show how these in-gap states are topological in nature and localized at the zigzag termini of the nanoribbons. In addition to rationalizing the driving force behind the topological class selection of 5-AGNRs, we also uncover the length-dependent behavior of these end states which transition from singly occupied spin-split states to a closed-shell form as the ribbons become shorter. Finally, we demonstrate the magnetic character of the end states via transport experiments in a model two-terminal device structure in which the ribbons are suspended between the scanning probe and the substrate that both act as leads.

16.
Chem Sci ; 11(21): 5441-5446, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-34094071

ABSTRACT

Fine management of chiral processes on solid surfaces has progressed over the years, yet still faces the need for the controlled and selective production of advanced chiral materials. Here, we report on the use of enantiomerically enriched molecular building blocks to demonstrate the transmission of their intrinsic chirality along a sequence of on-surface reactions. Triggered by thermal annealing, the on-surface reactions induced in this experiment involve firstly the coupling of the chiral reactants into chiral polymers and subsequently their transformation into planar prochiral graphene nanoribbons. Our study reveals that the axial chirality of the reactant is not only transferred to the polymers, but also to the planar chirality of the graphene nanoribbon end products. Such chirality transfer consequently allows, starting from adequate enantioenriched reactants, for the controlled production of chiral and prochiral organic nanoarchitectures with pre-defined handedness.

17.
Nanoscale ; 11(33): 15567-15575, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31402370

ABSTRACT

Over the last decades, organosulfur compounds at the interface of noble metals have proved to be extremely versatile systems for both fundamental and applied research. However, the anchoring of thiols to gold remained an object of controversy for a long time. The RS-Au-SR linkage, in particular, is a robust bonding configuration that displays interesting properties. It is generated spontaneously at room temperature and can be used for the production of extended molecular nanostructures. In this work we explore the behavior of 1,4-bis(4-mercaptophenyl)benzene (BMB) on the Au(111) surface, which results in the formation of 2D crystalline metal-organic assemblies stabilized by this type of Au-thiolate bonds. We show how to control the thiolate's stereospecific bonding motif and thereby choose whether to form ordered arrays of Au3BMB3 units with embedded triangular nanopores or linearly stacked metal-organic chains. The former turn out to be thermodynamically favored structures and display confinement of the underneath Au(111) surface state. The electronic properties of single molecules as well as of the 2D crystalline self-assemblies have been characterized both on the metal-organic backbone and inside the associated pores.

18.
Chemphyschem ; 20(18): 2305-2310, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31328365

ABSTRACT

Within the collection of surface-supported reactions currently accessible for the production of extended molecular nanostructures under ultra-high vacuum, Ullmann coupling has been the most successful in the controlled formation of covalent single C-C bonds. Particularly advanced control of this synthetic tool has been obtained by means of hierarchical reactivity, commonly achieved by the use of different halogen atoms that consequently display distinct activation temperatures. Here we report on the site-selective reactivity of certain carbon-halogen bonds. We use precursor molecules halogenated with bromine atoms at two non-equivalent carbon atoms and found that the Ullmann coupling occurs on Au(111) with a remarkable predilection for one of the positions. Experimental evidence is provided by means of scanning tunneling microscopy and core level photoemission spectroscopy, and a rationalized understanding of the observed preference is obtained from density functional theory calculations.

19.
ACS Nano ; 12(10): 10537-10544, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30295463

ABSTRACT

Designing molecular organic semiconductors with distinct frontier orbitals is key for the development of devices with desirable properties. Generating defined organic nanostructures with atomic precision can be accomplished by on-surface synthesis. We use this "dry" chemistry to introduce topological variations in a conjugated poly( para-phenylene) chain in the form of meta-junctions. As evidenced by STM and LEED, we produce a macroscopically ordered, monolayer thin zigzag chain film on a vicinal silver crystal. These cross-conjugated nanostructures are expected to display altered electronic properties, which are now unraveled by highly complementary experimental techniques (ARPES and STS) and theoretical calculations (DFT and EPWE). We find that meta-junctions dominate the weakly dispersive band structure, while the band gap is tunable by altering the linear segment's length. These periodic topology effects induce significant loss of the electronic coupling between neighboring linear segments leading to partial electron confinement in the form of weakly coupled quantum dots. Such periodic quantum interference effects determine the overall semiconducting character and functionality of the chains.

20.
Chem Commun (Camb) ; 54(73): 10260-10263, 2018 Sep 11.
Article in English | MEDLINE | ID: mdl-30152499

ABSTRACT

Achieving the Ag(001)-supported synthesis of heptacene from two related reactants reveals the effect of the presence of Br atoms on the reaction process. The properties of reactants, intermediates and end-products are further characterized by scanning tunneling microscopy and spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...