Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(7): e18045, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37496895

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease, with an increasing prevalence as the population ages, posing a serious threat to human health, but the pathogenesis remains uncertain. Acanthopanax senticosus (Rupr. et Maxim.) Harms (ASH) (aqueous ethanol extract), a Chinese herbal medicine, provides obvious and noticeable therapeutic effects on PD. To further investigate the ASH's mechanism of action in treating PD, the structural and functional gut microbiota, as well as intestinal metabolite before and after ASH intervention in the PD mice model, were examined utilizing metagenomics and fecal metabolomics analysis. α-syn transgenic mice were randomly divided into a model and ASH groups, with C57BL/6 mice as a control. The ASH group was gavaged with ASH (45.5 mg/kg/d for 20d). The time of pole climbing and autonomous activity were used to assess motor ability. The gut microbiota's structure, composition, and function were evaluated using Illumina sequencing. Fecal metabolites were identified using UHPLC-MS/MS to construct intestinal metabolites. The findings of this experiment demonstrate that ASH may reduce the climbing time of PD model mice while increasing the number of autonomous movements. The results of metagenomics analysis revealed that ASH could up-regulated Firmicutes and down-regulated Actinobacteria at the phylum level, while Clostridium was up-regulated and Akkermansia was down-regulated at the genus level; it could also recall 49 species from the phylum Firmicutes, Actinobacteria, and Tenericutes. Simultaneously, metabolomics analysis revealed that alpha-Linolenic acid metabolism might be a key metabolic pathway for ASH to impact in PD. Furthermore, metagenomics function analysis and metabolic pathway enrichment analysis revealed that ASH might influence unsaturated fatty acid synthesis and purine metabolism pathways. These metabolic pathways are connected to ALA, Palmitic acid, Adenine, and 16 species of Firmicutes, Actinobacteria, and Tenericutes. Finally, these results indicate that ASH may alleviate the movement disorder of the PD model, which may be connected to the regulation of gut microbiota structure and function as well as the modulation of metabolic disorders by ASH.

2.
Sci Rep ; 13(1): 10944, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37414816

ABSTRACT

Hypertension is the most prevalent chronic disease World-wide, and the leading preventable risk factor for cardiovascular disease (CVD). Few patients accomplish the objective of decreasing blood pressure and avoiding hypertensive target organ damage after treatments with antihypertensive agents which opens the door for other treatments, such as herbal-and antihypertensive combination therapy. Captopril (CAP), as a-pril which inhibits angiotensin converting enzyme has long been used in the management of hypertension and CVD. Gedan Jiangya Decoction (GJD) is known for antihypertensive effects in prior studies. The research is aimed to determine whether GJD in combination with captopril has antihypertensive, kidney protective, antioxidant, and vasoactive effects in spontaneously hypertensive rats (SHR). Regular measurements of systolic and diastolic blood pressure (SBP and DBP), and body weight were monitored weekly. H&E staining was utilized to examine histopathology. The combined effects were studied using ELISA, immunohistochemistry, and qRT-PCR. Significant reductions in SBP, DBP, aortic wall thickness, and improvement in renal tissue were observed following GJD + CAP treatment, with increased serum levels of NO, SOD, GSH-Px, and CAT and decreases in Ang II, ET-1, and MDA. Similarly, GJD + CAP treatment of SHR's significantly decreased ET-1 and AGTR1 mRNA and protein expression while increasing eNOS mRNA and protein expression in thoracic aorta and kidney tissue. In conclusion, the present investigation found that GJD + CAP treatment decreases SHR blood pressure, improves aorta remodeling and renal protection, and that this effect could be attributable, in part, due to antioxidant and vascular tone improvement.


Subject(s)
Antihypertensive Agents , Hypertension , Rats , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Captopril/pharmacology , Captopril/therapeutic use , Rats, Inbred SHR , Antioxidants/pharmacology , Kidney/pathology , Blood Pressure
3.
J Ethnopharmacol ; 300: 115703, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36096347

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Integrated Chinese herbal medicine (CHM) and Western Medicine (WM) treatments have been used for primary hypertension (PHTN) patients in China. Currently, there are many randomized control trials (RCTs) published regarding the effect of CHM and WM on PHTN, which indicated that combining Chinese with WM was effective and safe for PHTN when compared with WM alone, but the quality of evidence was insufficient, and there is no clear information and summary are available for these RCTs assessing the effectiveness of CHM with WM versus WM in patients with PHTN. OBJECTIVES: This systematic study and meta-analysis aimed to evaluate the effectiveness and safety of CHM combined with WM in comparison with WM in reducing systolic and diastolic blood pressure for patients with PHTN. METHODS: The information of this study was searched from electronic databases (PubMed, COCHRANE, EMBASE, Ovid, CNKI, VIP, Wanfang, and CBM). The markedly effective and effective terms were according to Guiding Principles for Clinical Research of New Chinese Medicines. Two investigators independently reviewed each trial. The Cochrane risk of bias assessment tool was used for quality assessment, and RevMan 5.4 was used for meta-analysis. RESULTS: In this study, a total of 29 studies that included 2623 patients were recorded. The study results displayed that the clinical effectiveness in the treatment of hypertension patients from the integrated medicines was considerably higher than that with WM alone, clinical effective (RR 1.23, 95% CI [1.17, 1.30], P < 0.00001), and markedly effective (ME) in the patients (RR 1.66, 95% CI [1.52, 1.80], and P < 0.00001). Random effect in SBP (MD 7.91 mmHg,[6.00, 983], P < 0.00001) and DBP (MD 5.46 mmHg, [3.88, 6.43], P < 0.00001), a subgroup analysis was carried out based on the type of intervention, duration of treatment, and CHM formulas that showed significance. Furthermore, no severe side effects were reported, and no patients stopped treatment or withdrawal due to any severe adverse events. CONCLUSION: Compared to WM alone, the therapeutic effectiveness of CHM combined with WM is significantly improved in the treatment of hypertension. Additionally, CHM with WM may safely and efficiently lower systolic blood pressure (SBP) and diastolic blood pressure (DBP) in individuals with PHTN. However, rigorous randomized controlled trials with a large sample, high quality, long duration of treatment, and follow-up are recommended to strengthen this clinical evidence.


Subject(s)
Drugs, Chinese Herbal , Hypertension , Integrative Medicine , Antihypertensive Agents/therapeutic use , Drugs, Chinese Herbal/adverse effects , Humans , Hypertension/chemically induced , Hypertension/drug therapy , Randomized Controlled Trials as Topic
4.
Front Mol Biosci ; 9: 1102735, 2022.
Article in English | MEDLINE | ID: mdl-36582202

ABSTRACT

Background and Objective: One of the most recent forms of programmed cell death, ferroptosis, is crucial in tumorigenesis. Ferroptosis is characterized by iron-dependent oxidative destruction of cellular membranes following the antioxidant system's failure. However, it is unknown whether ferroptosis-related genes (FRGs) are associated with colon adenocarcinoma (COAD) metastasis, immune cell infiltration, and oxidative stress in COAD. The current study concentrated on FRGs expression in colon cancer metastasis, their relationship to immune cell infiltration (ICI), and potential pathological pathways in COAD. Methods and Results: Clinical information and mRNA expression patterns for patients with COAD metastasis were obtained from the public TCGA database. Patients with low mRNA levels showed good overall survival than patients with high mRNA levels. The genomic-clinicopathologic nomogram was subsequently created by combining risk score and clinicopathological features. Absolute Shrinkage and Selection Operator have shown a 4 gene signature that can stratify cancer patients into high-risk versus low-risk. These four FRGs were found to be significantly linked to the overall survival of COAD patients and predicted high risk score. Next, age, stage, and PTNM were combined in univariate and multivariate cox regression models to perform a filtering procedure. The receiver operating characteristic (ROC) and calibration curves indicated that constructed signature model exhibited high prediction accuracy and clinical relevance in COAD. ARID3A showed a strong negative correlation with a wide range of immune tumour-infiltrating cells in COAD microenvironment. According to the single sample gene set enrichment analysis (ssGSEA) results, FRGs are involved in variety of pathological pathways including PI3K-AKT-mTOR pathway, reactive oxygen species (ROS) pathway, response to hypoxia pathway, and other inflammation related pathways. Moreover, dysregulation of FRGs in COAD patients showed a significance correlation with wide range of miRNAs and transcription factors (TFs). Conclusion: We identified new diagnostic biomarkers and established prognostic models for ferroptosis related programmed cell death in COAD metastasis. FRGs may improve tumor cell survival by activating the TGFB pathway, which can stimulate ROS production, accelerates ECM breakdown, and promote tumor progression and invasion. Genes implicated in ferroptosis, as revealed by the Kaplan Meier and a genomic-clinicopathologic nomogram, are potential therapeutic targets and prognosis indications for metastasis COAD patients.

5.
Article in English | MEDLINE | ID: mdl-36437833

ABSTRACT

Gedan Jiangya Decoction (GJD), a Chinese herbal medicine composed of six botanical medicines, was designed to treat hypertension (patent published number (CN114246896A)). The overexpression of the ERK (extracellular signal-regulated kinase) signaling pathway is essential in developing left ventricular hypertrophy (LVH). This study aimed to evaluate GJD's effects on LVH in spontaneously hypertensive rats (SHRs) and examine its potential mechanisms on Ras/ERK1/2 pathway regulation. Thirty-five ten-week-old SHRs were randomly assigned to one of five groups: GJD low dosage, medium dose, high dose, model, and captopril. Wistar-Kyoto (WKY) rats served as the control group. All rats received a 6-week treatment. The following parameters were measured: systolic (SBP) and diastolic blood pressure (DBP), left ventricular mass index (LVMI), and serum TGF-beta1. The pathologic structure was determined by H & E staining and Masson. TGF-beta1, Ras, ERK1/2, and C-Fos levels were determined using western blotting and real-time qPCR. SBP, DBP, and LVMI were reduced significantly in the GJD group compared with the model group. GJD inhibited TGF-beta1, Ras, ERK1/2, and C-Fos expression in LVH. In conclusion, GJD reduced the Ras/ERK1/2 pathway expression, which decreased hypertension-induced heart hypertrophy. GJD may protect hypertension-induced myocardial hypertrophy by altering gene expression patterns in the heart.

6.
Mediators Inflamm ; 2022: 7345116, 2022.
Article in English | MEDLINE | ID: mdl-36164390

ABSTRACT

Gedan Jiangya decoction (GJD) (aqueous ethanol extract), a traditional Chinese medicine formula which contain six botanical drugs (Uncaria rhynchophylla (Miq.) Miq., Salvia miltiorrhiza Bunge, Pueraria lobata (Willd.) Ohwi, Eucommia ulmoides Oliv., Prunella vulgaris L., and Achyranthes bidentata Blume) was designed to treat hypertension; however, the underlying mechanism of action is unclear. This study aimed to determine the mechanisms of action of GJD in the treatment of hypertension in spontaneously hypertensive rats (SHR). Male SHRs were randomly divided into five groups: GJD doses were low (1.36 g/kg/d), medium (2.72 g/kg/d), and high (5.44 g/kg/d), captopril (13.5 mg/kg/d), and SHR groups, with Wistar-Kyoto rats (WKY) serving as the control. Every rat was gavaged once a day. The ALC-NIBP, a noninvasive blood pressure device, measured systolic (SBP) and diastolic (DBP) blood pressures. Six weeks following treatment, all rats were anesthetized. The blood samples were obtained from the abdominal aorta and then serum isolated to assess endothelin-1 and angiotensin II, interleukin-1beta, interleukin-6, and TNF-alpha. The left ventricular and thoracic aortas were taken for HE staining, immunohistochemistry, RT-qPCR, and western blot examination. Following GJD therapy, SBP and DBP were significantly lowered, as were serum levels of endothelin-1 and angiotensin II. The thickness of the left ventricular and thoracic aorta walls reduced, as did type I collagen, type III collagen, and alpha-SMA expression in the left ventricular and aortic tissues. The GJD treatment significantly reduced serum levels of the inflammatory markers interleukin-1beta, interleukin-6, and TNF-alpha. Furthermore, interleukin-1 beta, interleukin-6, TNF-alpha, TAK1, and NF-κB/p65 levels were significantly reduced in left ventricular and aortic tissues, whereas IkB-alpha levels were significantly elevated. GJD has a dose-dependent effect on all parameters. In conclusion, GJD has been shown to lower blood pressure, improve cardiovascular remodeling, and reduce inflammation via regulating NF-κB in SHRs.


Subject(s)
Angiotensin II , Hypertension , Angiotensin II/pharmacology , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Blood Pressure , Captopril/pharmacology , Captopril/therapeutic use , Collagen Type III , Endothelin-1/pharmacology , Ethanol , Inflammation/drug therapy , Interleukin-1beta/pharmacology , Interleukin-6/pharmacology , Male , NF-kappa B , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Tumor Necrosis Factor-alpha/pharmacology , Uncaria
7.
Biomed Res Int ; 2022: 3353464, 2022.
Article in English | MEDLINE | ID: mdl-36046450

ABSTRACT

Primary hypertension is understood as a disease with diverse etiology, a complicated pathological mechanism, and progressive changes. Gedan Jiangya Decoction (GJD), with the patent publication number CN114246896A, was designed to treat primary hypertension. It contains six botanical drugs; however, the underlying mechanism is uncertain. We utilized network pharmacology to predict the active components, targets, and signaling pathways of GJD in the treatment of primary hypertension. We also investigated the potential molecular mechanism using molecular docking and animal experiments. The Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), the Protein Database (UniProt), and a literature review were used to identify the active components and related targets of GJD's pharmacological effects. The GeneCards, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), and DrugBank databases were utilized to identify hypertension-related targets. Based on a Venn diagram of designed intersection targets, 214 intersection targets were obtained and 35 key targets for the treatment of hypertension were determined using the STRING data platform and Cytoscape software. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of key targets revealed that the relevant molecular action pathways of GJD in the treatment of hypertension include the Toll-like receptor, MAPK, PI3K-Akt, and renin-angiotensin signaling pathways. A GJD active ingredient-key target-pathway connection diagram was created using Cytoscape software, and 11 essential active components were selected. Molecular docking was then used to verify the binding activity of key targets and key active ingredients in GJD to treat primary hypertension. The results of this study indicate that AGTR1, AKT1 with puerarin, EDNRA with tanshinone IIA, MAPK14 with daidzein, MAPK8 with ursolic acid, and CHRM2 with cryptotanshinone had high binding activity to the targets with active components, whereas AGTR1 was selected as target genes verified by our experiment. HPLC was utilized to identify the five active ingredients. Experiments in high-salt rats demonstrated that GJD might decrease the expression of AGTR1 in the kidney and thoracic aorta while increasing the expression of eNOS by preventing the activation of the renin-angiotensin pathway, thereby reducing lowering systolic and diastolic blood pressure.


Subject(s)
Drugs, Chinese Herbal , Hypertension , Angiotensins/therapeutic use , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Hypertension/drug therapy , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Rats , Renin
8.
Biomed Res Int ; 2022: 4949148, 2022.
Article in English | MEDLINE | ID: mdl-36017390

ABSTRACT

Objective: The aims of this study were to investigate the impact of TAK-242 on the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear transcription factor-κB (NF-κB) signal transduction pathway in rats with hepatic fibrosis (HF) using the liver gut axis and to investigate the molecular mechanism of its intervention on HF. Methods: SPF grade SD male rats were randomly allocated to the control, model, and TAK-242 groups. For 8 weeks, the model and TAK-242 groups received 3 mL·kg-1 (the initial dose 5 mL·kg-1) intraperitoneal injections of 40% CCL4 olive oil solution. TAK-242 (5 mg·kg-1) was administered once a day for 5 days after modeling. The pathological alterations of liver and small intestine tissues in each group were observed using H&E and Masson staining. ELISA was used to measure serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), direct bilirubin (DBIL), total bilirubin (TBIL), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α). RT-qPCR was utilized to identify the mRNA expression level of IL-1ß, IL-6, TNF-α, TLR4, MyD88, and NF-κB in rat liver and small intestine tissues. The protein level of IL-1ß, IL-6, TNF-α, TLR4, MyD88, and NF-κB protein in rat liver and small intestine tissues was determined utilizing Western blot and IHC. Results: TAK-242 significantly reduced AST, ALT, TBIL, and DBIL expression in HF rats' serum (P < 0.01) and alleviated liver tissue injury. Hematoxylin-eosin (H&E) and Masson staining revealed inflammatory cell infiltration and fibrous proliferation in the liver and small intestine tissue in the model group and partial cell swelling in the TAK-242 group, which indicated a considerable improvement compared to the model group. RT-qPCR, Western blot, and IHC data indicated that TAK-242 reduced the IL-1ß, IL-6, TNF-α, TLR4, MyD88, and NF-κB expression in the liver and small intestine tissues of HF rats. Conclusion: TAK-242 might downregulate the TLR4/MyD88/NF-κB signal pathway through the liver-gut axis, suppress the inflammatory response, and eventually alleviate HF in rats.


Subject(s)
Myeloid Differentiation Factor 88 , Toll-Like Receptor 4 , Animals , Bilirubin/metabolism , Interleukin-6/metabolism , Liver Cirrhosis/pathology , Male , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Rats , Sulfonamides , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
9.
Front Pharmacol ; 13: 745074, 2022.
Article in English | MEDLINE | ID: mdl-35450051

ABSTRACT

Shenerjiangzhi formulation (SEJZ) is a new traditional Chinese medicine formulation (patent number: CN110680850A). SEJZ contains Eleutherococcus senticosus (Rupr. and Maxim.), Maxim (Araliaceae; E. senticosus radix and rhizome), Lonicera japonica Thunb (Caprifoliaceae; Lonicera japonica branch, stem), Crataegus pinnatifida Bunge (Rosaceae; Crataegus pinnatifida fruit), and Auricularia auricula. SEJZ has been designed to treat hyperlipidemia. Despite the therapeutic benefits of SEJZ, its underlying mechanism of action is not known. We explored the efficacy of SEJZ against hyperlipidemia by integrating network pharmacology and 16S rRNA gene sequencing and elucidated its mechanism of action. First, SEJZ targets were found through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and from the literature. Hyperlipidemia-related therapeutic targets were obtained from GeneCards, Online Mendelian Inheritance in Man, and DrugBank databases. Then, Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape were applied for the analyses and construction of a protein-protein interaction (PPI) network. The Kyoto Encyclopedia of Genes and Genomes database was employed to identify signaling pathways that were enriched. Second, the therapeutic effects of SEJZ against hyperlipidemia induced by consumption of a high-fat diet in rats were evaluated by measuring body weight changes and biochemical tests. SEJZ treatment was found to alleviate obesity and hyperlipidemia in rats. Finally, 16S rRNA gene sequencing showed that SEJZ could significantly increase the abundance of short-chain fatty acid-producing bacteria, restore the intestinal barrier, and maintain intestinal-flora homeostasis. Using PICRUSt2, six metabolic pathways were found to be consistent with the results of network pharmacology: "African trypanosomiasis", "amoebiasis", "arginine and proline metabolism", "calcium signaling pathway", "NOD-like receptor signaling pathway", and "tryptophan metabolism". These pathways might represent how SEJZ works against hyperlipidemia. Moreover, the "African trypanosomiasis pathway" had the highest association with core genes. These results aid understanding of how SEJZ works against dyslipidemia and provide a reference for further studies.

10.
Front Microbiol ; 13: 1051100, 2022.
Article in English | MEDLINE | ID: mdl-36687648

ABSTRACT

Baicalin (BA) is among the most effective and abundant flavonoids extracted from Scutellaria baicalensis that may be utilized to treat diseases associated with hepatic fibrosis (HF). Through network pharmacology, gut microbiota, and experimental validation, this research intends to elucidate the multi-target mechanism of BA on HF. BA targets were screened using databases and literature. As a result, In the anti-HF mechanism, the BA and 191 HF-associated targets interact, with 9 specific targets indicating that the BA's anti-HF mechanism is closely linked to gut microbiota. Consequently, rat intestinal content samples were obtained and examined using 16S rRNA sequencing. In the BA-treated group, the gut microbiota was positively regulated at the phylum,and genus levels, with Lactobacillus performing significantly. The study concluded that BA has a multi-targeted anti-HF effect and has changed the gut microbial ecosystem.

SELECTION OF CITATIONS
SEARCH DETAIL
...