Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Respir J ; 54(1)2019 07.
Article in English | MEDLINE | ID: mdl-31073086

ABSTRACT

BACKGROUND: Pulmonary fibrosis is one of the leading indications for lung transplantation. The disease, which is of unknown aetiology, can be progressive, resulting in distortion of the extracellular matrix (ECM), inflammation, fibrosis and eventual death. METHODS: 13 patients born to consanguineous parents from two unrelated families presenting with interstitial lung disease were clinically investigated. Nine patients developed respiratory failure and subsequently died. Molecular genetic investigations were performed on patients' whole blood or archived tissues, and cell biological investigations were performed on patient-derived fibroblasts. RESULTS: The combination of a unique pattern of early-onset lung fibrosis (at 12-15 years old) with distinctive radiological findings, including 1) traction bronchiectasis, 2) intralobular septal thickening, 3) shrinkage of the secondary pulmonary lobules mainly around the bronchovascular bundles and 4) early type 2 respiratory failure (elevated blood carbon dioxide levels), represents a novel clinical subtype of familial pulmonary fibrosis. Molecular genetic investigation of families revealed a hypomorphic variant in S100A3 and a novel truncating mutation in S100A13, both segregating with the disease in an autosomal recessive manner. Family members that were either heterozygous carriers or wild-type normal for both variants were unaffected. Analysis of patient-derived fibroblasts demonstrated significantly reduced S100A3 and S100A13 expression. Further analysis demonstrated aberrant intracellular calcium homeostasis, mitochondrial dysregulation and differential expression of ECM components. CONCLUSION: Our data demonstrate that digenic inheritance of mutations in S100A3 and S100A13 underlie the pathophysiology of pulmonary fibrosis associated with a significant reduction of both proteins, which suggests a calcium-dependent therapeutic approach for management of the disease.


Subject(s)
Lung/pathology , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/physiopathology , S100 Proteins/genetics , Adolescent , Child , Family Health , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Male , Mutation , Pedigree , Pulmonary Fibrosis/diagnosis , Saudi Arabia
2.
Ann Thorac Med ; 14(1): 94-98, 2019.
Article in English | MEDLINE | ID: mdl-30745942

ABSTRACT

Idiopathic Pleuro-Parenchymal Fibroelsatosis (PPFE) is a rare, progressive and recently recognized subtype of idiopathic interstitial lung disease with no recorded successful treatment other than lung transplant. We report a case of idiopathic pleuroparenchymal fibroelastosis from the Middle East, managed successfully by bilateral lung transplant performed on a 26 year old Saudi male.

3.
J Pathol ; 235(4): 606-18, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25421395

ABSTRACT

Heart failure is associated with the reactivation of a fetal cardiac gene programme that has become a hallmark of cardiac hypertrophy and maladaptive ventricular remodelling, yet the mechanisms that regulate this transcriptional reprogramming are not fully understood. Using mice with genetic ablation of calcium/calmodulin-dependent protein kinase II δ (CaMKIIδ), which are resistant to pathological cardiac stress, we show that CaMKIIδ regulates the phosphorylation of histone H3 at serine-10 during pressure overload hypertrophy. H3 S10 phosphorylation is strongly increased in the adult mouse heart in the early phase of cardiac hypertrophy and remains detectable during cardiac decompensation. This response correlates with up-regulation of CaMKIIδ and increased expression of transcriptional drivers of pathological cardiac hypertrophy and of fetal cardiac genes. Similar changes are detected in patients with end-stage heart failure, where CaMKIIδ specifically interacts with phospho-H3. Robust H3 phosphorylation is detected in both adult ventricular myocytes and in non-cardiac cells in the stressed myocardium, and these signals are abolished in CaMKIIδ-deficient mice after pressure overload. Mechanistically, fetal cardiac genes are activated by increased recruitment of CaMKIIδ and enhanced H3 phosphorylation at hypertrophic promoter regions, both in mice and in human failing hearts, and this response is blunted in CaMKIIδ-deficient mice under stress. We also document that the chaperone protein 14-3-3 binds phosphorylated H3 in response to stress, allowing proper elongation of fetal cardiac genes by RNA polymerase II (RNAPII), as well as elongation of transcription factors regulating cardiac hypertrophy. These processes are impaired in CaMKIIδ-KO mice after pathological stress. The findings reveal a novel in vivo function of CaMKIIδ in regulating H3 phosphorylation and suggest a novel epigenetic mechanism by which CaMKIIδ controls cardiac hypertrophy.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cardiomegaly/enzymology , Heart Failure/enzymology , Hemodynamics , Histones/metabolism , Myocytes, Cardiac/enzymology , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Animals , Binding Sites , Calcium-Calmodulin-Dependent Protein Kinase Type 2/deficiency , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cardiomegaly/genetics , Cardiomegaly/physiopathology , Cardiomegaly/prevention & control , Cells, Cultured , Chromatin Assembly and Disassembly , Disease Models, Animal , Epigenesis, Genetic , Gene Expression Regulation, Enzymologic , Heart Failure/genetics , Heart Failure/physiopathology , Heart Failure/prevention & control , Humans , Male , Mice, Knockout , Phosphorylation , Protein Processing, Post-Translational , RNA Interference , RNA Polymerase II/metabolism , Rats , Transcription, Genetic , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...