Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mar Drugs ; 17(8)2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31395834

ABSTRACT

In the present study, LC-HRESIMS-assisted dereplication along with bioactivity-guided isolation led to targeting two brominated oxindole alkaloids (compounds 1 and 2) which probably play a key role in the previously reported antibacterial, antibiofilm, and cytotoxicity of Callyspongia siphonella crude extracts. Both metabolites showed potent antibacterial activity against Gram-positive bacteria, Staphylococcus aureus (minimum inhibitory concentration (MIC) = 8 and 4 µg/mL) and Bacillus subtilis (MIC = 16 and 4 µg/mL), respectively. Furthermore, they displayed moderate biofilm inhibitory activity in Pseudomonas aeruginosa (49.32% and 41.76% inhibition, respectively), and moderate in vitro antitrypanosomal activity (13.47 and 10.27 µM, respectively). In addition, they revealed a strong cytotoxic effect toward different human cancer cell lines, supposedly through induction of necrosis. This study sheds light on the possible role of these metabolites (compounds 1 and 2) in keeping fouling organisms away from the sponge outer surface, and the possible applications of these defensive molecules in the development of new anti-infective agents.


Subject(s)
Alkaloids/pharmacology , Callyspongia/chemistry , Oxindoles/pharmacology , Animals , Anti-Infective Agents/pharmacology , Antiprotozoal Agents/pharmacology , Bacteria/drug effects , Biofilms/drug effects , Cell Line, Tumor , HT29 Cells , Halogenation , Humans , Indian Ocean , Microbial Sensitivity Tests/methods
2.
Front Chem ; 6: 538, 2018.
Article in English | MEDLINE | ID: mdl-30525020

ABSTRACT

Saccharomonospora sp. UR22 and Dietzia sp. UR66, two actinomycetes derived from the Red Sea sponge Callyspongia siphonella, were co-cultured and the induced metabolites were monitored by HPLC-DAD and TLC. Saccharomonosporine A (1), a novel brominated oxo-indole alkaloid, convolutamydine F (2) along with other three known induced metabolites (3-5) were isolated from the EtOAc extract of Saccharomonospora sp. UR22 and Dietzia sp. UR66 co-culture. Additionally, axenic culture of Saccharomonospora sp. UR22 led to isolation of six known microbial metabolites (6-11). A kinase inhibition assay results showed that compounds 1 and 3 were potent Pim-1 kinase inhibitors with an IC50 value of 0.3 ± 0.02 and 0.95 ± 0.01 µM, respectively. Docking studies revealed the binding mode of compounds 1 and 3 in the ATP pocket of Pim-1 kinase. Testing of compounds 1 and 3 displayed significant antiproliferative activity against the human colon adenocarcinoma HT-29, (IC50 3.6 and 3.7 µM, respectively) and the human promyelocytic leukemia HL-60, (IC50 2.8 and 4.2 µM, respectively). These results suggested that compounds 1 and 3 act as potential Pim-1 kinase inhibitors that mediate the tumor cell growth inhibitory effect. This study highlighted the co-cultivation approach as an effective strategy to increase the chemical diversity of the secondary metabolites hidden in the genomes of the marine actinomycetes.

3.
Mar Drugs ; 16(8)2018 Jul 30.
Article in English | MEDLINE | ID: mdl-30061488

ABSTRACT

Fungi usually contain gene clusters that are silent or cryptic under normal laboratory culture conditions. These cryptic genes could be expressed for a wide variety of bioactive compounds. One of the recent approaches to induce production of such cryptic fungal metabolites is to use histone deacetylases (HDACs) inhibitors. In the present study, the cultures of the marine-derived fungus Penicillium brevicompactum treated with nicotinamide and sodium butyrate were found to produce a lot of phenolic compounds. Nicotinamide treatment resulted in the isolation and identification of nine compounds 1⁻9. Sodium butyrate also enhanced the productivity of anthranilic acid (10) and ergosterol peroxide (11). The antioxidant as well as the antiproliferative activities of each metabolite were determined. Syringic acid (4), sinapic acid (5), and acetosyringone (6) exhibited potent in vitro free radical scavenging, (IC50 20 to 30 µg/mL) and antiproliferative activities (IC50 1.14 to 1.71 µM) against HepG2 cancer cell line. Furthermore, a pharmacophore model of the active compounds was generated to build up a structure-activity relationship.


Subject(s)
Aquatic Organisms/metabolism , Epigenesis, Genetic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Penicillium/metabolism , Phenols/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Aquatic Organisms/drug effects , Aquatic Organisms/genetics , Butyric Acid/pharmacology , Chromatography, High Pressure Liquid , Drug Screening Assays, Antitumor , Free Radical Scavengers/chemistry , Free Radical Scavengers/isolation & purification , Free Radical Scavengers/metabolism , Free Radical Scavengers/pharmacology , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Niacinamide/pharmacology , Penicillium/drug effects , Penicillium/genetics , Phenols/chemistry , Phenols/isolation & purification , Phenols/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...