Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 18523, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37898662

ABSTRACT

Graphene is a 2D material with promising commercial applications due to its physicochemical properties. Producing high-quality graphene economically and at large scales is currently of great interest and demand. Here, the potential of producing high-quality graphene at a large scale via water-phase exfoliation methods is investigated. By altering exfoliation parameters, the production yield of graphene and flake size are evaluated. Pretreatment of the precursor graphite powder using acidic solutions of H2SO4 at different concentrations is found to increase further the yield and structural quality of the exfoliated graphene flakes. These findings are confirmed through various spectroscopy and surface characterization techniques. Controlling flake size, thickness, and yield are demonstrated via optimization of the sonication process, centrifuge time, and H2SO4 pretreatment.

2.
ACS Omega ; 6(44): 29781-29787, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34778651

ABSTRACT

The geometrical dependence of humidity sensors on sensing performance has not been quantitatively outlined. Furthermore, the etching effect on humidity sensors is still elusive due to the difficulty in separating the effects of the geometrical change and etching-induced porosity on the overall performance. Here, we use COMSOL Multiphysics to perform a numerical study of a capacitive graphene oxide (GO) humidity sensor, with emphasis on the dimensions and etching effect on their sensing performance. GO is a useful and promising material in detecting humidity because of its selective superpermeability to water molecules. The mechanism of improved sensing performance of the etched humidity sensors is discussed in terms of the morphological profile and the effective permittivity including the etching-induced porosity effect. Our study shows that as compared to the unetched sensors, isotropic etching achieves the lowest response time of 1.011 s at 15.75% porosity, while vertical etching achieves the highest capacitance sensitivity of 0.106 fF/RH %.

SELECTION OF CITATIONS
SEARCH DETAIL
...