Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 360: 121161, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38761626

ABSTRACT

Recent attention on the detrimental effects of pharmaceutically active compounds (PhACs) in natural water has spurred researchers to develop advanced wastewater treatment methods. Carbamazepine (CBZ), a widely recognized anticonvulsant, has often been a primary focus in numerous studies due to its prevalence and resistance to breaking down. This study aims to explore the effectiveness of a bio-electrochemical system in breaking down CBZ in polluted water and to assess the potential harmful effects of the treated wastewater. The results revealed bio-electro degradation process demonstrated a collaborative effect, achieving the highest CBZ degradation compared to electrodegradation and biodegradation techniques. Notably, a maximum CBZ degradation efficiency of 92.01% was attained using the bio-electrochemical system under specific conditions: Initial CBZ concentration of 60 mg/L, pH level at 7, 0.5% (v/v) inoculum dose, and an applied potential of 10 mV. The degradation pathway established by identifying intermediate products via High-Performance Liquid Chromatography-Mass Spectrometry, revealed the complete breakdown of CBZ without any toxic intermediates or end products. This finding was further validated through in vitro and in vivo toxicity assays, confirming the absence of harmful remnants after the degradation process.

2.
Colloids Surf B Biointerfaces ; 234: 113763, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38262106

ABSTRACT

In the present study, the vanadium pentoxide (V2O5) nickel-doped vanadium pentoxide (Ni@V2O5) was prepared and determined for in vitro anticancer activity. The structural characterization of the prepared V2O5 and Ni@V2O5 was determined using diverse morphological and spectroscopic analyses. The DRS-UV analysis displayed the absorbance at 215 nm for V2O5 and 331 nm for Ni@V2O5 as the primary validation of the synthesis of V2O5 and Ni@V2O5. The EDS spectra exhibited the presence of 30% of O, 69% of V, and 1% of Ni and the EDS mapping showed the constant dispersion. The FE-SEM and FE-TEM analysis showed the V2O5 nanoparticles are rectangle-shaped and nanocomposites have excellent interfaces between nickel and V2O5. The X-ray photoelectron spectroscopy (XPS) investigation of Ni@V2O5 nanocomposite endorses the occurrence of elements V, O, and Ni. The in vitro MTT assay clearly showed that the V2O5 and Ni@V2O5 have significantly inhibited the proliferation of B16F10 skin cancer cells. In addition, the nanocomposite produces the endogenous reactive oxygen species in the mitochondria, causes the mitochondrial membrane and nuclear damage, and consequently induces apoptosis by caspase 9/3 enzymatic activity in skin cancer cells. Also, the western blot analysis showed that the nanocomposite suppresses the oncogenic marker proteins such as PI3K, Akt, and mTOR in the skin cancer cells. Together, the results showed that Ni@V2O5 can be used as an auspicious anticancer agent against skin cancer.


Subject(s)
Nanocomposites , Skin Neoplasms , Vanadium Compounds , Humans , Phosphatidylinositol 3-Kinases , Nickel/pharmacology , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Photoelectron Spectroscopy , Apoptosis , Skin Neoplasms/drug therapy
3.
Chemosphere ; 346: 140574, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37926164

ABSTRACT

Water splitting provides an environmental-friendly and sustainable approach for generating hydrogen fuel. The inherent energetic barrier in two-core half reactions such as the Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) leads to undesired increased overpotential and constrained reaction kinetics. These challenges pose significant challenges that demand innovative solutions to overcome. One of the efficient ways to address this issue is tailoring the morphology and crystal structure of metal-organic frameworks (MOF). Nickel Zeolite Imidazolate Framework (Ni-ZIF) is a popular MOF and it can be tailored using facile chemical methods to unleash a remarkable bifunctional electro/photo catalyst. This innovative solution holds the capability to address prevailing obstacles such as inadequate electrical conductivity and limited access to active metal centers due to the influence of organic ligands. Thereby, applying boronization to the Ni-ZIF under different duration, one can induce blooming of nanobuds under room temperature and modify oxygen vacancies in order to achieve higher reaction kinetics in electro/photo catalysis. It can be evidenced by the 24-h boronized Ni-ZIF (BNZ), exhibiting lower overpotentials as electrocatalyst (OER-396 mV & HER-174 mV @ 20 mA/cm2) in 1 M KOH electrolyte and augmented gas evolution rates when employed as a photocatalyst (Hydrogen-14.37 µmol g-1min-1 & Oxygen-7.40 µmol g-1min-1). The 24-h boronization is identified as the optimum stage of crystalline to amorphous transformation which provided crystalline/amorphous boundaries as portrayed by X-Ray diffraction (XRD) and High Resolution-Transmission Electron Microscopy (HR-TEM) analysis. The flower-like transformation of 24-BNZ, characterized by crystalline-amorphous boundaries initiates with partial disruption of Ni-N bonds and formation of Ni-B bonds as evident from X-ray Photoelectron Spectroscopy (XPS). Further, the 24-h BNZ exhibit bifunctional catalytic activities with pre-longed stability. Overall, this work presents a comprehensive study of the electrocatalytic and photocatalytic water splitting properties of the tailored Ni-ZIF material.


Subject(s)
Metal-Organic Frameworks , Zeolites , Nickel , Temperature , Catalysis , Hydrogen , Oxygen , Water
4.
Ultrason Sonochem ; 101: 106650, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37866137

ABSTRACT

Sonophotocatalysis has garnered significant attention due to its potential to enhance advanced oxidation processes, particularly water splitting, by employing materials with combined sonocatalytic and photocatalytic properties. In this study, we synthesized and investigated core-shell BaTiO3@SrTiO3 nanowires (BST NWs) with varying Sr/Ba molar ratios (2.5:7.5, 5.0:5.0, 7.5:2.5 mM, denoted as BST-1, BST-2, and BST-3, respectively) as catalysts for hydrogen production through water splitting. The piezoelectric nanowires demonstrated hydrogen evolution via both sonocatalysis and photocatalysis. In the sonophotocatalysis process, the ultrasonic vibration induced mechanical forces on the BST nanowires, thereby establishing a built-in electric field. This built-in electric field facilitated the effective separation of photo-generated charge carriers and prolonged their lifetimes, leading to a synergistic enhancement of hydrogen evolution. The pristine BaTiO3 and SrTiO3 nanowires exhibited relatively low hydrogen evolution rates (HER) of 7.0 and 6.0 µmol·g-1min-1, respectively. In contrast, the core-shell nanowires exhibited a substantial improvement in the hydrogen evolution rate. The HER increased with the addition of Sr, and BST-1, BST-2, and BST-3 achieved HERs of 12.0, 13.5, and 18.0 µmol·g-1min-1, respectively. The superior performance of BST-3 nanowires can be attributed to their highest piezoelectric potential and largest surface area. Additionally, BST-3 nanowires demonstrated remarkable stability over multiple cycles, validating their practical applicability as efficient photocatalysts.

5.
Environ Res ; 239(Pt 1): 117367, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37827364

ABSTRACT

In today's industrialized world, contamination of soil and water with various substances has emerged as a pressing concern. Bioremediation, with its advantages of degradation or detoxification, non-polluting nature, and cost-effectiveness, has become a promising method due to technological advancements. Among the bioremediation agents, bacteria have been highly explored and documented as a productive organism. Recently, few studies have reported on the significance of Herbaspirillum sp., a Gram-negative bacterium, in bioremediating herbicides, pesticides, polycyclic aromatic hydrocarbons, metalloids, and heavy metals, as well as its role in augmenting phytoremediation efforts. Herbaspirillum sp. GW103 leached 66% of Cu from ore materials and significantly enhanced the phytoaccumulation of Pb and Zn in plumule and radical tissues of Zea mays L. plants. Additionally, Herbaspirillum sp. WT00C reduced Se6+ into Se0, resulting in an increased Se0 content in tea plants. Also, Herbaspirillum sp. proved effective in degrading 0.6 mM of 4-chlorophenol, 92.8% of pyrene, 77.4% of fluoranthene, and 16.4% of trifluralin from aqueous solution and soil-water system. Considering these findings, this review underscores the need for further exploration into the pathways of pollutant degradation, the enzymes pivotal in the degradation or detoxification processes, the influence of abiotic factors and pollutants on crucial gene expression, and the potential toxicity of intermediate products generated during the degradation process. This perspective reframes the numerical data to underscore the underutilized potential of Herbaspirillum sp. within the broader context of addressing a significant research gap. This shift in emphasis aligns more closely with the problem-necessity for solution-existing unexplored solution framework.


Subject(s)
Environmental Pollutants , Herbaspirillum , Herbicides , Metals, Heavy , Pesticides , Biodegradation, Environmental , Herbaspirillum/genetics , Hydrocarbons , Metals, Heavy/toxicity , Soil , Water
6.
Chemosphere ; 343: 140230, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37734496

ABSTRACT

Antibiotics have revolutionized modern day living with their ability to effectively treat infectious diseases in humans and animals. However, the release of antibiotic compounds into the environment has led to toxic consequences. To reduce this environmental impact, it is important to employ an inexpensive and rational technology to reduce the amount of antibiotics released into the ecosystem. This study aims to explore the potential of using a bio-electrochemical system (BES) to remove Amoxicillin (AMX) from artificially contaminated soil using a microbial consortium and pure culture isolates. Under desired conditions, including an initial AMX concentration of 150 mg/L, 5 mg/L tryptone as the nitrogen source, pH of 7, temperature of 29 °C, an applied potential of 0.8 V, and an inoculum dose of 1% w/v, the BES showed a maximum degradation of 97.9% of AMX with the microbial consortium (HP03, HP09, and HP10). High performance liquid chromatography-mass spectrometry was used to analyse the intermediates formed during the degradation process, and the pathway elucidated revealed complete degradation of AMX. Phytotoxicity studies and degradation efficiency against multiple antibiotics confirmed the environmental significance of the BES with microbial consortium. Overall, this study highlights the potential of BES as a cost-effective and efficient method for reducing the release of antibiotics into the environment and provides valuable insights into the mechanisms and pathways of antibiotic degradation.


Subject(s)
Amoxicillin , Ecosystem , Humans , Animals , Amoxicillin/analysis , Anti-Bacterial Agents/chemistry , Bacteria/metabolism , Waste Disposal Facilities
7.
Environ Res ; 231(Pt 3): 116289, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37263467

ABSTRACT

Enterococcus gallinarum (JT-02) isolated and identified from the animal farm waste sludge was found to be capable of biodegrading p-nitrophenol (PNP), an organic compound used to manufacture drugs, fungicides, insecticides, dyes, and to darken leather. The intention of this study was to optimize the biodegradation by finding the optimal conditions for the specific strain through single-factor experiments. The bacterial strain was grown in Luria Bertani broth and various parameters were optimized to achieve the prime settings for the p-nitrophenol (PNP) biodegradation. The results indicated that the best setups for the biodegradation by the strain JT-02 was 100 mg/L of PNP; pH 7; 30 °C; 150 rpm in a shaker incubator and 3% (v/v) of inoculum dose. Once the optimal conditions were found, the bacteria were capable of degrading p-nitrophenol (98.21%) in 4 days. Intermediates produced during PNP biodegradation were identified using High Performance Liquid Chromatography (HPLC) analysis and the biodegradation pathway was elucidated. Phytotoxicity studies were carried out with Vigna radiata seeds to confirm the applicability and efficiency of PNP biodegradation.


Subject(s)
Enterococcus , Sewage , Animals , Sewage/microbiology , Farms , Bacteria/metabolism
8.
Food Res Int ; 171: 112993, 2023 09.
Article in English | MEDLINE | ID: mdl-37330843

ABSTRACT

The comprehensive metabolic profiling was performed in the leaf extracts of Mangifera indica and assessed for their significant therapeutic application in tissue engineering and regenerative medicine in both in vitro and in vivo studies. About 147 compounds were identified in the ethyl acetate and methanol extracts of M. indica using MS/MS fragmentation analysis and the selected compounds were quantified using LC-QqQ-MS analysis. The in vitro cytotoxic activity showed that the M. indica extracts enhance the proliferation of mouse myoblast cells in concentration-dependent manner. As well, the extracts of M. indica induce the myotube formation by generating oxidative stress in the C2C12 cells was confirmed. The western blot analysis clearly showed that the M. indica induce myogenic differentiation by upregulating the myogenic marker proteins such as PI3K, Akt, mTOR, MyoG, and MyoD. The in vivo studies showed that the extracts expedites the acute wound repair by formation of crust, wound closure and improves the blood perfusion towards the wound area. Together, the leaves of M. indica can be used as excellent therapeutic agent for tissue repair and wound healing applications.


Subject(s)
Mangifera , Tandem Mass Spectrometry , Mice , Animals , Plant Extracts/pharmacology , Chromatography, Liquid , Cell Differentiation
9.
Chemosphere ; 326: 138436, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36933842

ABSTRACT

The renewability and zero carbon emissions of hydrogen make it a promising clean energy resource to meet future energy demands. Owing to its benefits, photocatalytic water-splitting has been extensively investigated for hydrogen production. However, the low efficiency poses a serious challenge to its implementation. Herein, we attempted to synthesize bimetallic transition metal selenides, namely Co/Mo/Se (CMS) photocatalysts, with varying atomic compositions (CMSa, CMSb, and CMSc) and investigated their photocatalytic water splitting efficiencies. The observed hydrogen evolution rates were as follows: 134.88 µmol g-1 min-1 for CoSe2, 145.11 µmol g-1 min-1 for MoSe2, 167.31 µmol g-1 min-1 for CMSa, 195.11 µmol g-1 min-1 for CMSb, and 203.68 µmol g-1 min-1 for CMSc. Hence, we deemed CMSc to be the most potent photocatalytic alternative among the compounds. CMSc was also tested for its efficiency towards degradation of triclosan (TCN), and results substantiated that CMSc succeeded degrading 98% TCN while CMSa and b were able to degrade 80 and 90% TCN respectively-the attained efficiency being exponentially higher than CoSe2 and MoSe2 taken for comparative analysis in addition to complete degradation of the pollutants leaving no harmful intermediaries during the process. Thus, CMSc shall be identified as a highly potential photocatalyst with respect to both environmental and energy applications.


Subject(s)
Cobalt , Molybdenum , Light , Water , Hydrogen
10.
Chemosphere ; 313: 137485, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36526143

ABSTRACT

Prolonged exposure to antibiotics would likely favor the development of antibiotic resistance and their gene transfer among bacterial communities that are responsible for enriched antibiotic resistant microbes. Sulfamethoxazole (SFM) is a commonly used antibiotic that is released into the environment through human and animal wastes. Improper degradation of SFM poses severe threats to mankind and all life forms. The present study aims in analyzing the process and the probability of utilizing bio-electrokinetic degradation for elimination of SFM from artificially contaminated soil employing Enterobacter hormaechei HaG-7. The desired optimal conditions for SFM degradation (∼98%) were observed at SFM initial concentration (100 mg/L) with an inoculum dose (1% v/v) and applied potential voltage (1.5 V) at pH (7). The results indicated efficient and complete degradation of SFM when compared with the conventional biodegradation.


Subject(s)
Enterobacter , Sulfamethoxazole , Animals , Humans , Sulfamethoxazole/toxicity , Anti-Bacterial Agents/toxicity , Biodegradation, Environmental
11.
Molecules ; 27(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36557942

ABSTRACT

A facile two-step synthesis of ternary hetero-composites of ZnO, CuO, and single-walled carbon nanotubes (SWCNTs) was developed through a recrystallization process followed by annealing. A series of nanocomposites were prepared by varying the weight ratio of copper(II) acetate hydrate and zinc(II) acetate dihydrate and keeping the weight ratio of SWCNTs constant. The results revealed the formation of heterojunctions (ZnO-SWCNT-CuO, ZSC) of three crystal structures adjacent to each other, forming a ternary wurtzite-structured nanoparticles along with defects. Enhanced charge separation (electron-hole pairs), reduced band gap, defect-enhanced specific surface area, and promoted oxidation potential were key factors for the enhanced photocatalytic activity of the ternary nanocomposites. OH• radicals were the main active species during dye degradation, and O2-• and h+ were also involved to a lesser extent. A type II heterojunction mechanism approach is proposed based on the charge carrier migration pattern. Among the synthesized nanocomposites, the sample prepared using copper(II) acetate hydrate and zinc(II) acetate dihydrate in a 1: 9 ratio (designated a ZSC3) showed the highest photocatalytic activity. ZSC3 achieved 99.2% photodecomposition of methylene blue in 20 min, 94.1% photodecomposition of Congo red in 60 min, and 99.6% photodecomposition of Rhodamine B in 40 min under simulated sunlight. Additionally, ZSC3 showed excellent reusability and stability, maintaining 96.7% of its activity even after five successive uses. Based on overall results, the ZSC sample was proposed as an excellent candidate for water purification applications.


Subject(s)
Nanocomposites , Nanotubes, Carbon , Zinc Oxide , Zinc Oxide/chemistry , Sunlight , Catalysis , Nanocomposites/chemistry , Zinc
12.
Food Funct ; 13(24): 13002-13013, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36449013

ABSTRACT

Investigation of phytochemicals and bioactive molecules is tremendously vital for the applications of new plant resources in chemistry, food, and medicine. In this study, the chemical profiling of sap of Acer mono (SAM), a Korean syrup known for its anti-osteoporosis effect, was performed using UPLC-ESI-Q-TOF-MSE analysis. A total of 23 compounds were identified based on the mass and fragmentation characteristics and most of the compounds have significant biomedical applications. The in vitro antioxidant assessment of SAM indicated excellent activity by scavenging DPPH and ABTS-free radicals and were found to be 23.35 mg mL-1 and 29.33 mg mL-1, respectively, as IC50 concentrations. As well, the in vitro proliferation effect of the SAM was assessed against mouse MC3T3-E1 cells, and the results showed that the SAM enhanced the proliferation of the cells, and 12.5 mg mL-1 and 25 mg mL-1 of SAM were selected for osteogenic differentiation. The morphological analysis clearly evidenced the SAM enhanced the osteogenic activity in MC3T3-E1 cells by the increased deposition of extracellular calcium and nodule formation. Moreover, the qRT-PCR analysis confirmed the increased expression of osteoblast marker gene expression including ALP, osteocalcin, osteopontin, collagen1α1, Runx2, and osterix in SAM-treated MC3T3-E1 cells. Together, these results suggest that SAM possesses osteogenic effects and can be used for bone regeneration and bone loss-associated diseases such as osteoporosis.


Subject(s)
Acer , Osteoblasts , Osteoporosis , Plant Extracts , Animals , Mice , Acer/chemistry , Cell Differentiation , Osteoblasts/drug effects , Osteocalcin/metabolism , Osteogenesis/drug effects , Osteoporosis/drug therapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , 3T3 Cells , Metabolomics
13.
Life Sci ; 309: 121022, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36206836

ABSTRACT

In the present study, the wurtzite (WZ) type of zinc oxide (ZnO) nanoparticles were synthesized and functionalized with quercetin (ZnO@Quercetin) for the treatment of ovarian cancer. Initially, the chemical synthesis of ZnO nanoparticles was confirmed with DRS UV-vis spectroscopy and the bandgap of the ZnO revealed that the WZ type of nanoparticles. The electron microscopy analysis showed the hexagonal shape, monocrystalline nature of nanoparticles with an average size of 20-25 nm and the SAED pattern showed the interplanar planes for WZ type nanoparticles. XRD analysis revealed the presence of strong peaks corresponding to ZnO nanoparticles and the Raman spectroscopic analysis showed the characteristic peaks at E2 (high) and E1 vibrational mode for WZ type of ZnO nanoparticles. The in vitro cytotoxic activity of ZnO@Quercetin nanoparticles showed the excellent activity by generating intercellular oxidative stress and depolarization of mitochondrial membrane potential against human ovarian cancer cells. The dual-staining assay showed that the ZnO@Quercetin induces late apoptosis through activation of the intrinsic apoptosis signaling pathway in PA-1 cells. Together, the present study indicates the ZnO@Quercetin nanoparticles can be used for the treatment of human metastatic ovarian cancer.


Subject(s)
Metal Nanoparticles , Ovarian Neoplasms , Zinc Oxide , Humans , Female , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Quercetin/pharmacology , Apoptosis , Ovarian Neoplasms/drug therapy , Signal Transduction , Metal Nanoparticles/chemistry
14.
Chemosphere ; 307(Pt 2): 135937, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35934097

ABSTRACT

Hydrogen has been considered as a promising clean energy source owing to its renewability and zero carbon emission. Accordingly, photocatalytic water splitting has drawn much attention as a key green technology of producing hydrogen. However, it has remained as a great challenge due to the low production rate and expensive constituents of photocatalytic systems. Herein, we synthesised nanostructures consisting of transition metal selenide and g-C3N4 for photocatalytic water splitting reaction. They include ZnSe, FeSe2, Zn/FeSe2 and ZnFeSe2 nanoflowers and a nanocomposite made of Zn/FeSe2 and g-C3N4. Hydrogen evolution rates in the presence of ZnSe, FeSe2, Zn/FeSe2 and ZnFeSe2 photocatalysts were measured as 60.03, 128.02, 155.11 and 83.59 µmolg-1 min-1, respectively. On the other hand, with the nanocomposite consisting of Zn/FeSe2 and g-C3N4, the hydrogen and oxygen evolution rates were significantly enhanced up to 202.94 µmol g-1min-1 and 90.92 µmol g-1min-1, respectively. The nanocomposite was also examined as a photocatalyst for degradation of rhodamine B showing that it photodegrades the compound two times faster compared to pristine Zn/FeSe2 nanoflowers without g-C3N4. Our study suggests the nanocomposite of Zn/FeSe2 and g-C3N4 as a promising photocatalyst for energy and environmental applications.


Subject(s)
Iron , Water , Carbon , Hydrogen/chemistry , Oxygen , Selenium Compounds , Water/chemistry , Zinc , Zinc Compounds
15.
Chemosphere ; 303(Pt 2): 135091, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35644242

ABSTRACT

The wide use of antibiotics has caused their continual release and persistence in the eco-system, subsequently giving birth to antibiotic resistant bacterial species in the aquatic environment, thereby necessitating immediate and efficient remediation of the contaminated environment. In the present study, we synthesized Ag/Ag2S@BiOI nanowires with an average diameter of ∼150 nm and length of 3-5 µm using a hydrothermal method and employed them as photocatalysts for photocatalytic degradation of tetracycline as a model antibiotic. The nanowire achieved nearly complete degradation of tetracycline (∼99%) within 60 min at the optimal condition of 100 mg/L TC concentration and pH 2. The degradation followed pseudo-first order kinetics, with a rate constant of 0.06228 min- 1. Our toxicity tests showed that the nanowire has negligible toxicity towards PBMC cells, suggesting it as a promising photocatalyst.


Subject(s)
Nanowires , Anti-Bacterial Agents/toxicity , Catalysis , Female , Humans , Leukocytes, Mononuclear , Pregnancy , Tetracycline/toxicity
16.
Arch Microbiol ; 204(7): 388, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35697887

ABSTRACT

Mosquitoes play an important role in the spread of vector-borne diseases and their management is highly essential. Plant extracts have been explored for their mosquitocidal activity against different types of vectors. The present work aimed to determine the larvicidal and pupicidal activity of Lantana camara L. essential oil-loaded nano-emulsion formulation for the control of pests. The synthesized essential oil-loaded nano-emulsion was subjected to evaluate the antioxidant potential and mosquito larvicidal properties. GC-MS analysis revealed that the essential oil of Lantana camara L. leaf contained 12 bioactive components. Caryophyllene oxide (15.81), n-Hexadecanoic acid (4.22), Davanone (6.49) and beta-Sesquiphellandrene (2.32) are the major compounds identified. The nano-emulsion was effective against A. aegypti immature stage (larvae and pupae) and adult mosquitoes in laboratory conditions. The LC50 was found to be 18.183 ppm (I), 23.337 ppm (II), 29.731 ppm (III), 38.943 ppm (IV) instars and 45.295 ppm (pupae), respectively. The LD50 and LD90 values for adult mosquitoes were 11.947 mg/cm2 and 47.716 mg/cm2, respectively. The antioxidant activity of ascorbic acid (55.9%), glutathione (67.7%) and quercetin (48.6%) was recorded, respectively. The level of acetylcholinesterase (0.06 mM) and alkaline phosphatase (0.05 mM) activity significantly decreased from the control (0.12 mM) which revealed the efficacy of essential oil-loaded nano-emulsion to treat larvae. This study suggested that using an essential oil-loaded nano-emulsion formulation effectively controlled the mosquito vectors. It was also evidenced that the use of nano-emulsion has a great role in near future, especially in vector management.


Subject(s)
Lantana , Oils, Volatile , Acetylcholinesterase , Animals , Antioxidants/pharmacology , Larva , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Plant Leaves
17.
Chemosphere ; 302: 134827, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35526682

ABSTRACT

Harmful Algal Blooms (HABs) have turned out to be a global occurrence owing to the detrimental phenomenon like eutrophication and global climate change caused by human activities. This newly emergent threat imposes a severe hazardous to public health, ecosystems and fishery-based economies. Rapid and exponential growth of certain delirious and toxic algal species shall be held causative to the formation of HABs. The potential disadvantages they pose, make it necessary the identification of efficient treatment methodologies. Photocatalysis has been identified as the most promising solution amongst all the identified and investigated methods, for the environmental and economic benefits beheld. Different treatment methodologies were evaluated and light has been thrown on the advantages beheld by photocatalysis over the other methods. Focus has been given to the different photocatalysts that have been so far put to use towards photocatalytic disinfection of HABs and algal toxins. This present study provides useful information on the application of the traditional and photocatalysis process for removal of HABs in water bodies. Moreover, the results revealed that photocatalysis method could cause potent inhibitory effect on growth of algae species and disrupted algal cells membranes to some extent. Finally, the conventional treatment techniques have been recognized to be insufficient for removal of HABs. However, the photocatalyst technology have been utilized mostly for the mineralization and neutralization of the algal pollutants without any harmful secondary pollutants.


Subject(s)
Ecosystem , Environmental Pollutants , Harmful Algal Bloom , Humans , Semiconductors , Water
18.
Chemosphere ; 301: 134699, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35483659

ABSTRACT

Pharmaceuticals and personal care products occupy a predominant position with respect to both utility and release into the ecosystem, thereby contributing to environmental pollution at alarming rates. Of the several methods identified to minimize the concentration of PPCPs, nanomaterial based photocatalysis seems to be a potential alternative for it being highly economical and eco-friendly. In this study, we synthesized Nickel zinc ferrite (Ni-ZF) [Nix Zn1-x Fe2O4 (x = 0, 0.3, 0.7)] nanoparticles with an average diameter of ∼400 nm by a co-precipitation method towards diclofenac degradation. The composite showed greater degrees of crystallinity devoid of any impurities. Nearly complete DCF degradation (∼99%) was achieved after 50 min reaction time with the nanoparticles at pH 7 for an initial DCF concentration of 50 mg/L. The degradation process followed a pseudo first-order rate law with the rate constant of 0.1657 min- 1. Microbial toxicity and phytotoxicity studies demonstrated negligible toxicity imposed by the contaminated water treated with the prepared composite, suggesting it as a promising photocatalyst benefitting in all aspects.


Subject(s)
Diclofenac , Nanoparticles , Catalysis , Diclofenac/toxicity , Ecosystem , Light , Zinc
19.
Environ Res ; 212(Pt A): 113136, 2022 09.
Article in English | MEDLINE | ID: mdl-35351453

ABSTRACT

WO3/Zeolite/V2O5 (TZV) composite synthesized through co-precipitation was used for the degradation of Bisphenol-A (BpA). XRD and Raman spectra were employed to ascertain the crystallinity of the composite. The pristine nature of the compound without any free particles over the zeolite surface was established through FESEM, thus, substantiating the composite character of the material. The enhancement in activity after doping with WO3 was ascertained by DRS-UV. Photocatalytic degradation studies clearly established the superiority of TZV 10 over bare V2O5. Complete BpA degradation (100%) was attained at 50 min of incubation with 0.75 g/L TZV-10 in acidic medium (pH 3) for an initial BpA concentration of 100 mg/L. HPLC-MS/MS analysis was used to decipher the degradation pathway. The catalyst was stable even after 9 cycles. Phytotoxicity studies and lake water treatment results proved the environmental efficiency of the synthesized material.


Subject(s)
Zeolites , Benzhydryl Compounds/toxicity , Catalysis , Phenols/chemistry , Tandem Mass Spectrometry
20.
J Hazard Mater ; 416: 126209, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34492970

ABSTRACT

In this present study, spherical shaped zinc ferrite (Zn/Fe2O4) was prepared as uniformly sized (65 ± 0.5 nm) nanoparticles with band gap (2.00 eV) in a visible light regime and employed for the photocatalytic degradation of carbamazepine (CBZ). The doping of Zn decreased the band gap (from 2.00 to 1.98 eV) and enhanced the absorption of visible light. Zinc doping also induced effective separation of photogenerated carriers and subsequent charge migration to the surface of the Zn/Fe2O4 nanoparticle. On account of the advantages of the material, a high removal efficiency (~ 100%) of CBZ through photocatalytic degradation was achieved. Kinetics of CBZ degradation follows a pseudo first-order with the rate constant 0.0367 min-1. In-vitro and in-vivo toxicity of the nanoparticles were examined promoting the environmental implications.


Subject(s)
Carbamazepine , Zinc , Carbamazepine/toxicity , Catalysis , Ferric Compounds , Light , Zinc/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...