Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(26): 28072-28092, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38973883

ABSTRACT

An intensive idea of bone tissue engineering is to design regenerative nanofibrous scaffolds that could afford a natural extracellular matrix (ECM) microenvironment with the ability to induce cell proliferation, biodegradation, sustained drug release, and bioactivity. Even the mechanical properties and orientation of the nanofibers may enhance the performance of the scaffolds. To address this issue, we designed novel sandwich-like hybrid silk fibroin (SF)/silica/poly(vinyl alcohol) (PVA) nanofibers scaffolds. The developed scaffold was further characterized using scanning electron microscopy (SEM), elemental mapping, X-ray diffraction (XRD), Fourier-transform infrared (FTIR), and water/blood contact angle measurements. Owing to the interfacial interaction between the layers of organic (chitosan/silk fibroin) and inorganic (silica) in the nanofibrous scaffold, a biocompatibility study has been made on an osteoblast-like (MG63) cell line, which has significant statistical differences; hemocompatibility and the mechanical profile were evaluated in detail to understand the suitability as a biomaterial. To endow the scaffold biodegradation rate, antibacterial activity, porosity profile, and cephalexin monohydrate (CEM), a drug-loading/drug release study was also performed for all of the nanofibers. This strategy explored superior mechanical strength with higher biomineralization on SF/silica/PVA nanofibers. Eventually, the proposed article compared the observation of monolayered scaffolds with designed sandwich-structured scaffolds for the enhancement of bone regeneration.

2.
Environ Sci Pollut Res Int ; 31(29): 41990-42011, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38858286

ABSTRACT

Hydroxyapatite (HAp) stands as an inorganic compound, recognized as a non-toxic, bioactive ceramic, and its composition closely resembles that of bone material. In this study, nHAp was prepared from waste oyster shells, which are biowaste rich in calcium carbonate. nHAp with its unique catalytic property can be used as an adsorbent in various fields, including wastewater treatment. nHAp with an exceptional surface adsorbent with excellent chemical stability, enabling its catalytic function. Nano hydroxyapatite doped with Zinc oxide (ZnO) by wet chemical precipitation and made into a composite with Graphene oxide (GO) by modified hummers method followed by grinding, which was taken as 9:1 ratio (nHAp/ZnO and GO) of weight, enhances its tensile and mechanical strength. The energy band gap of nHAp photocatalyst was evaluated as 3.39 eV and that of the in nHAp/ZnO/GO photocatalyst was narrowed to 1.77 eV. The ternary nanocomposites are very efficient in generating the photogenerated electrons and holes, thereby improving the degradation potential of dye effluents to by-products such as CO2 and H2O. The nanocomposites photocatalyst were characterized by FTIR, XRD, SEM, TEM, EDS, XPS, DRS, and BET techniques. The UV-visible study shows the complete dye degradation efficiency of the prepared nanocomposites photocatalyst. In this study, the prepared nanocomposites nHAp/ZnO/GO have studied their efficiency for the removal of MB dye in a batch process by varying the dosage from 0.1 to 0.5 g, and the effects of dosage variations, pH, kinetic, scavenger study were evaluated at a time interval of 30 min. The removal of dye was found to be 99% at 150 min of 0.3 g dosage and pH = 12 is most favorable as it reached the same percentage at 90 min. The as-prepared nanocomposite nHAp/ZnO/GO fits the kinetic rate constant equation and shows a pseudo-first-order reaction model. This study indicates the suitability for dye removal due to the synergistic effect and electrostatic interaction of the synthesized ternary nanocomposite, which shows the potential, socially active, low-cost-effective, eco-friendly, and safe for photocatalytic degradation of MB from wastewater.


Subject(s)
Durapatite , Graphite , Methylene Blue , Ostreidae , Zinc Oxide , Zinc Oxide/chemistry , Animals , Durapatite/chemistry , Methylene Blue/chemistry , Catalysis , Graphite/chemistry , Water Pollutants, Chemical/chemistry , Nanocomposites/chemistry , Adsorption , Animal Shells/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...