Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Hum Behav ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459263

ABSTRACT

To support a range of behaviours, the brain must flexibly coordinate neural activity across widespread brain regions. One potential mechanism for this coordination is a travelling wave, in which a neural oscillation propagates across the brain while organizing the order and timing of activity across regions. Although travelling waves are present across the brain in various species, their potential functional relevance has remained unknown. Here, using rare direct human brain recordings, we demonstrate a distinct functional role for travelling waves of theta- and alpha-band (2-13 Hz) oscillations in the cortex. Travelling waves propagate in different directions during separate cognitive processes. In episodic memory, travelling waves tended to propagate in a posterior-to-anterior direction during successful memory encoding and in an anterior-to-posterior direction during recall. Because travelling waves of oscillations correspond to local neuronal spiking, these patterns indicate that rhythmic pulses of activity move across the brain in different directions for separate behaviours. More broadly, our results suggest a fundamental role for travelling waves and oscillations in dynamically coordinating neural connectivity, by flexibly organizing the timing and directionality of network interactions across the cortex to support cognition and behaviour.

2.
Nat Hum Behav ; 7(5): 754-764, 2023 05.
Article in English | MEDLINE | ID: mdl-36646837

ABSTRACT

Emotional events comprise our strongest and most valuable memories. Here we examined how the brain prioritizes emotional information for storage using direct brain recording and deep brain stimulation. First, 148 participants undergoing intracranial electroencephalographic (iEEG) recording performed an episodic memory task. Participants were most successful at remembering emotionally arousing stimuli. High-frequency activity (HFA), a correlate of neuronal spiking activity, increased in both the hippocampus and the amygdala when participants successfully encoded emotional stimuli. Next, in a subset of participants (N = 19), we show that applying high-frequency electrical stimulation to the hippocampus selectively diminished memory for emotional stimuli and specifically decreased HFA. Finally, we show that individuals with depression (N = 19) also exhibit diminished emotion-mediated memory and HFA. By demonstrating how direct stimulation and symptoms of depression unlink HFA, emotion and memory, we show the causal and translational potential of neural activity in the amygdalohippocampal circuit for prioritizing emotionally arousing memories.


Subject(s)
Emotions , Mental Recall , Humans , Emotions/physiology , Mental Recall/physiology , Hippocampus/physiology , Amygdala/diagnostic imaging , Amygdala/physiology , Brain
3.
Artif Organs ; 46(4): 531-540, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35199350

ABSTRACT

Dr. Jose Delgado performed audacious demonstrations utilizing brain stimulation to instantly change behavior in animals. These feats spark ethical debates to this day. However, behind his controversial career is an important legacy of neurological discoveries and technological innovation. Delgado pioneered techniques in causally manipulating brain patterns and behavior with electrical stimulation and developed innovative, closed-loop neural devices. His inventive devices and techniques were ahead of his time and remain relevant to the field of neuromodulation today.


Subject(s)
Brain , Animals , Brain/physiology , Electric Stimulation
4.
Brain Stimul ; 13(5): 1183-1195, 2020.
Article in English | MEDLINE | ID: mdl-32446925

ABSTRACT

BACKGROUND: Researchers have used direct electrical brain stimulation to treat a range of neurological and psychiatric disorders. However, for brain stimulation to be maximally effective, clinicians and researchers should optimize stimulation parameters according to desired outcomes. OBJECTIVE: The goal of our large-scale study was to comprehensively evaluate the effects of stimulation at different parameters and locations on neuronal activity across the human brain. METHODS: To examine how different kinds of stimulation affect human brain activity, we compared the changes in neuronal activity that resulted from stimulation at a range of frequencies, amplitudes, and locations with direct human brain recordings. We recorded human brain activity directly with electrodes that were implanted in widespread regions across 106 neurosurgical epilepsy patients while systematically stimulating across a range of parameters and locations. RESULTS: Overall, stimulation most often had an inhibitory effect on neuronal activity, consistent with earlier work. When stimulation excited neuronal activity, it most often occurred from high-frequency stimulation. These effects were modulated by the location of the stimulating electrode, with stimulation sites near white matter more likely to cause excitation and sites near gray matter more likely to inhibit neuronal activity. CONCLUSION: By characterizing how different stimulation parameters produced specific neuronal activity patterns on a large scale, our results provide an electrophysiological framework that clinicians and researchers may consider when designing stimulation protocols to cause precisely targeted changes in human brain activity.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Deep Brain Stimulation/methods , White Matter/diagnostic imaging , White Matter/physiology , Adult , Brain Mapping/methods , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/therapy , Electrocorticography/methods , Electrodes, Implanted , Female , Gray Matter/diagnostic imaging , Gray Matter/physiology , Humans , Male , Stereotaxic Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...