Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Physiol Plant ; 172(1): 233-246, 2021 May.
Article in English | MEDLINE | ID: mdl-33421138

ABSTRACT

Most high-yielding, semidwarf wheat (Triticum aestivum L.) grown around the world contains either Rht1 or Rht2 genes. The success of these high-yielding cultivars is greatest in the most productive farming environments but provide marginal benefits in less favorable growing conditions such as shallow soils and low-precipitation dryland farming. Further, growing evidence suggests semidwarf genes not only affect early seedling growth but limit grain yield, especially under abiotic stress conditions. There are 23 other reduced-height mutants reported in wheat, most of which have not been functionally characterized. We evaluated these mutants along with their parents for several traits affecting seedling emergence, early seedling growth, and photosynthetic efficiency. Two- to seven-fold differences in coleoptile length, first leaf length, root length, and root angle were observed among the genotypes. Most of the mutations had a positive effect on root length, while the root angle narrowed. Coleoptile and first leaf lengths were strongly correlated with emergence. A specialized deep planting experiment identified Rht5, Rht6, Rht8, and Rht13 with significantly improved seedling emergence compared to the parent. Among the mutants, Rht4, Rht19, and Rht12 ranked highest for photosynthetic traits while Rht9, Rht16, and Rht15 performed best for early seedling growth parameters. Considering all traits collectively, Rht15 showed the most promise for utilization in marginal environments followed by Rht19 and Rht16. These wheat mutants may be useful for deciphering the underlying molecular mechanisms of understudied traits and breeding programs in arid and semiarid regions where deep planting is practiced.


Subject(s)
Seedlings , Triticum , Cotyledon , Photosynthesis/genetics , Seedlings/genetics , Stress, Physiological/genetics , Triticum/genetics
2.
Sci Rep ; 9(1): 17327, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31757978

ABSTRACT

Auxin is an important phytohormone that regulates response, differentiation, and development of plant cell, tissue, and organs. Along with its local production, long-distance transport coordinated by the efflux/influx membrane transporters is instrumental in plant development and architecture. In the present study, we cloned and characterized a wheat (Triticum aestivum) auxin efflux carrier ABCB1. The TaABCB1 was physically localized to the proximal 15% of the short arm of wheat homoeologous group 7 chromosomes. Size of the Chinese spring (CS) homoeologs genomic copies ranged from 5.3-6.2 kb with the 7A copy being the largest due to novel insertions in its third intron. The three homoeologous copies share 95-97% sequence similarity at the nucleotide, 98-99% amino acid, and overall Q-score of 0.98 at 3-D structure level. Though detected in all analyzed tissues, TaABCB1 predominantly expressed in the meristematic tissues likely due to the presence of meristem-specific activation regulatory element identified in the promoter region. RNAi plants of TaABCB1 gene resulted in reduced plant height and increased seed width. Promoter analysis revealed several responsive elements detected in the promoter region including that for different hormones as auxin, gibberellic acid, jasmonic acid and abscisic acid, light, and circadian regulated elements.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Triticum/growth & development , Chromosome Mapping , Chromosomes, Plant/genetics , Cloning, Molecular , Gene Expression Regulation, Plant/drug effects , Meristem/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Polyploidy , Promoter Regions, Genetic , Tissue Distribution , Triticum/genetics , Triticum/metabolism
3.
Plants (Basel) ; 7(3)2018 Jul 15.
Article in English | MEDLINE | ID: mdl-30011961

ABSTRACT

Short-statured plants revolutionized agriculture during the 1960s due to their ability to resist lodging, increased their response to fertilizers, and improved partitioning of assimilates which led to yield gains. Of more than 21 reduced-height (Rht) genes reported in wheat, only three-Rht-B1b, Rht-D1b, and Rht8-were extensively used in wheat breeding programs. The remaining reduced height mutants have not been utilized in breeding programs due to the lack of characterization. In the present study, we determined the inheritance of Rht18 and developed a genetic linkage map of the region containing Rht18. The height distribution of the F2 population was skewed towards the mutant parent, indicating that the dwarf allele (Rht18) is semi-dominant over the tall allele (rht18). Rht18 was mapped on chromosome 6A between markers barc146 and cfd190 with a genetic distance of 26.2 and 17.3 cM, respectively. In addition to plant height, agronomically important traits, like awns and tiller numbers, were also studied in the bi-parental population. Although the average tiller number was very similar in both parents, the F2 population displayed a normal distribution for tiller number with the majority of plants having phenotype similar to the parents. Transgressive segregation was observed for plant height and tiller number in F2 population. This study enabled us to select a semi-dwarf line with superior agronomic characteristics that could be utilized in a breeding program. The identification of SSRs associated with Rht18 may improve breeders' effectiveness in selecting desired semi-dwarf lines for developing new wheat cultivars.

4.
PLoS One ; 12(12): e0189303, 2017.
Article in English | MEDLINE | ID: mdl-29240782

ABSTRACT

Starch Synthase (SS) plays an important role in extending the α-1,4 glucan chains during starch biosynthesis by catalyzing the transfer of the glucosyl moiety from ADP-glucose to the non-reducing end of a pre-existing glucan chain. SS has five distinct isoforms of which SSIII is involved in the formation of longer glucan chain length. Here we report identification and detailed characterization of 'true' orthologs of the well-characterized maize SSIII (ZmSSIII), among six monocots and two dicot species. ZmSSIII orthologs have nucleotide sequence similarity ranging from 56-81%. Variation in gene size among various orthologs ranged from 5.49 kb in Arabidopsis to 11.62 kb in Brachypodium and the variation was mainly due to intron size and indels present in the exons 1 and 3. Number of exons and introns were highly conserved among all orthologs however. While the intron number was conserved, intron phase showed variation at group, genera and species level except for intron 1 and 5. Several species, genera, and class specific cis-acting regulatory elements were identified in the promoter region. The predicted protein size of the SSIII orthologs ranged from 1094 amino acid (aa) in Arabidopsis to 1688 aa in Brachypodium with sequence identity ranging from 60%-89%. The N-terminal region of the protein was highly variable whereas the C-terminal region containing the Glycosyltransferase domain was conserved with >80% sequence similarity among the orthologs. In addition to confirming the known motifs, eleven novel motifs possibly providing species, genera and group specific functions, were identified in the three carbohydrate binding domains. Despite of significant sequence variation among orthologs, most of the motifs and their relative distances are highly conserved among the orthologs. The 3-D structure of catalytic region of SSIII orthologs superimposed with higher confidence confirming the presence of similar binding sites with five unidentified conserved regions in the catalytic (glycosyltransferase) domain including the pockets involved in catalysis and binding of ligands. Homeologs of wheat SSIII gene showed tissue and developmental stage specific expression pattern with the highest expression recorded in developing grains.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Brachypodium/genetics , Genes, Plant , Glucosyltransferases/genetics , Arabidopsis/enzymology , Brachypodium/enzymology , Catalytic Domain , Exons , Introns , Phylogeny , Promoter Regions, Genetic
5.
Front Plant Sci ; 8: 1913, 2017.
Article in English | MEDLINE | ID: mdl-29163625

ABSTRACT

Plant cell wall formation is a complex, coordinated and developmentally regulated process. Cellulose is the most dominant constituent of plant cell walls. Because of its paracrystalline structure, cellulose is the main determinant of mechanical strength of plant tissues. As the most abundant polysaccharide on earth, it is also the focus of cellulosic biofuel industry. To reduce culm lodging in wheat and for improved ethanol production, delineation of the variation for stem cellulose content could prove useful. We present results on the analysis of the stem cellulose content of 288 diverse wheat accessions and its genome-wide association study (GWAS). Cellulose concentration ranged from 35 to 52% (w/w). Cellulose content was normally distributed in the accessions around a mean and median of 45% (w/w). Genome-wide marker-trait association study using 21,073 SNPs helped identify nine SNPs that were associated (p < 1E-05) with cellulose content. Four strongly associated (p < 8.17E-05) SNP markers were linked to wheat unigenes, which included ß-tubulin, Auxin-induced protein 5NG4, and a putative transmembrane protein of unknown function. These genes may be directly or indirectly involved in the formation of cellulose in wheat culms. GWAS results from this study have the potential for genetic manipulation of cellulose content in bread wheat and other small grain cereals to enhance culm strength and improve biofuel production.

6.
Front Plant Sci ; 8: 19, 2017.
Article in English | MEDLINE | ID: mdl-28174576

ABSTRACT

ADP-glucose pyrophosphorylase (AGPase) is a heterotetrameric enzyme with two large subunits (LS) and two small subunits (SS). It plays a critical role in starch biosynthesis. We are reporting here detailed structure, function and evolution of the genes encoding the LS and the SS among monocots and dicots. "True" orthologs of maize Sh2 (AGPase LS) and Bt2 (AGPase SS) were identified in seven other monocots and three dicots; structure of the enzyme at protein level was also studied. Novel findings of the current study include the following: (i) at the DNA level, the genes controlling the SS are more conserved than those controlling the LS; the variation in both is mainly due to intron number, intron length and intron phase distribution; (ii) at protein level, the SS genes are more conserved relative to those for LS; (iii) "QTCL" motif present in SS showed evolutionary differences in AGPase belonging to wheat 7BS, T. urartu, rice and sorghum, while "LGGG" motif in LS was present in all species except T. urartu and chickpea; SS provides thermostability to AGPase, while LS is involved in regulation of AGPase activity; (iv) heterotetrameric structure of AGPase was predicted and analyzed in real time environment through molecular dynamics simulation for all the species; (v) several cis-acting regulatory elements were identified in the AGPase promoters with their possible role in regulating spatial and temporal expression (endosperm and leaf tissue) and also the expression, in response to abiotic stresses; and (vi) expression analysis revealed downregulation of both subunits under conditions of heat and drought stress. The results of the present study have allowed better understanding of structure and evolution of the genes and the encoded proteins and provided clues for exploitation of variability in these genes for engineering thermostable AGPase.

7.
Funct Integr Genomics ; 16(5): 545-55, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27481351

ABSTRACT

α-amylase is an important enzyme involved in starch degradation to provide energy to the germinating seedling. The present study was conducted to reveal structural and functional evolution of this gene among higher plants. Discounting polyploidy, most plant species showed only a single copy of the gene making multiple isoforms in different tissues and developmental stages. Genomic length of the gene ranged from 1472 bp in wheat to 2369 bp in soybean, and the size variation was mainly due to differences in the number and size of introns. In spite of this variation, the intron phase distribution and insertion sites were mostly conserved. The predicted protein size ranged from 414 amino acid (aa) in soybean to 449aa in Brachypodium. Overall, the protein sequence similarity among orthologs ranged from 56.4 to 97.4 %. Key motifs and domains along with their relative distances were conserved among plants although several species, genera, and class specific motifs were identified. The glycosyl hydrolase superfamily domain length varied from 342aa in soybean to 384aa in maize and sorghum while length of the C-terminal ß-sheet domain was highly conserved with 61aa in all monocots and Arabidopsis but was 59aa in soybean and Medicago. Compared to rice, 3D structure of the proteins showed 89.8 to 91.3 % similarity among the monocots and 72.7 to 75.8 % among the dicots. Sequence and relative location of the five key aa required for the ligand binding were highly conserved in all species except rice.


Subject(s)
Gene Expression Regulation, Plant/genetics , Multigene Family/genetics , Phylogeny , alpha-Amylases/genetics , Amino Acid Sequence , Arabidopsis/genetics , Introns/genetics , Magnoliopsida/classification , Magnoliopsida/genetics , Oryza/genetics , Glycine max/genetics , Triticum/genetics , Zea mays/genetics , alpha-Amylases/classification
8.
PLoS One ; 10(12): e0145227, 2015.
Article in English | MEDLINE | ID: mdl-26678261

ABSTRACT

Mutagenesis is a powerful tool used for studying gene function as well as for crop improvement. It is regaining popularity because of the development of effective and cost efficient methods for high-throughput mutation detection. Selection for semi-dwarf phenotype during green revolution has reduced genetic diversity including that for agronomically desirable traits. Most of the available mutant populations in wheat (Triticum aestivum L.) were developed in post-green revolution cultivars. Besides the identification and isolation of agronomically important alleles in the mutant population of pre-green revolution cultivar, this population can be a vital resource for expanding the genetic diversity for wheat breeding. Here we report an Ethylmethane Sulfonate (EMS) generated mutant population consisting of 4,180 unique mutant plants in a pre-green revolution spring wheat cultivar 'Indian'. Released in early 1900s, 'Indian' is devoid of any known height-reducing mutations. Unique mutations were captured by proceeding with single M2 seed from each of the 4,180 M1 plants. Mutants for various phenotypic traits were identified by detailed phenotyping for altered morphological and agronomic traits on M2 plants in the greenhouse and M3 plants in the field. Of the 86 identified mutants, 75 (87%) were phenotypically stable at the M4 generation. Among the observed phenotypes, variation in plant height was the most frequent followed by the leaf morphology. Several mutant phenotypes including looped peduncle, crooked plant morphology, 'gritty' coleoptiles, looped lower internodes, and burnt leaf tips are not reported in other plant species. Considering the extent and diversity of the observed mutant phenotypes, this population appears to be a useful resource for the forward and reverse genetic studies. This resource is available to the scientific community.


Subject(s)
Ethyl Methanesulfonate/pharmacology , Mutagenesis/drug effects , Polyploidy , Triticum/genetics , Phenotype , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Quantitative Trait, Heritable , Triticum/anatomy & histology
9.
BMC Genomics ; 16: 962, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26578187

ABSTRACT

BACKGROUND: Forward genetic approaches have limited use for agronomic traits that can't be reliably scored on a single plant basis. Thus, mutants in wheat and other crops are more useful for gene function studies by reverse genetic approach. With a long-term goal to develop a sequence-based mutation detection resource in hexaploid wheat, we conducted a feasibility study to accurately differentiate induced mutations from the homoeologs' sequence variations present among the three wheat genomes. RESULTS: A reduced representation ApeKI library consisting of 21 Ethylmethane Sulfonate (EMS) induced mutants and two wild type cv. Indian plants was developed using individual barcode adapters and sequenced. A novel bioinformatics pipeline was developed to identify sequence variants using 178,464 wheat unigenes as a reference wheat transcriptome. In total, 14,130 mutational changes [Single Nucleotide Polymorphisms (SNPs) and Insertions/Deletions (INDELs)] and 150,511 homoeologous sequence changes were detected. On an average, 662 SNPs (ranging from 46 to 1,330) and 10 small INDELs (ranging from 0 to 23) were identified for each of the mutants. A mutation frequency of one per 5 Kb was observed with 70 % being transitions and 30 % transversions. The pipeline was tested using the known sequence changes in the three wheat genes. Genes present in the distal regions of the chromosomes were found to be more prone to EMS compared to genes present in the proximal regions. Redefined parameters identified a total of 28,348 mutational changes (1,349/plant). CONCLUSIONS: We conclude that sequencing based mutation detection is a valuable method to identify induced mutations at large.


Subject(s)
Bread , Computational Biology , DNA Mutational Analysis , High-Throughput Nucleotide Sequencing , Mutation/genetics , Triticum/genetics , Base Sequence , Ethyl Methanesulfonate/pharmacology , Gene Expression Profiling , Genes, Plant/genetics , INDEL Mutation/drug effects , Mutation/drug effects , Mutation Rate , Polymorphism, Single Nucleotide/drug effects , Polyploidy , Sequence Homology, Nucleic Acid , Triticum/drug effects
10.
PLoS One ; 10(5): e0127544, 2015.
Article in English | MEDLINE | ID: mdl-26020768

ABSTRACT

Brassinosteroids (BRs) are plant hormones, fundamental for the growth and development of plants. A trans-membrane protein receptor kinase, Brassinosteroid-Insensitive 1 (BRI1), is known to interact with BRs and be directly involved in plant development. This study investigates the structural organization of BRI1 orthologs in several taxa, with a specific interest in Triticum aestivum. True orthologs of Arabidopsis thaliana BRI1 (AtBRI1) from seven-plant species showed sequence identity ranging from 54% to 95% at the protein level. All gene sequences lacked introns, leading to speculation that post-transcriptional processing in TaBRI1 is similar to AtBRI1. Based on in silico analysis, a single copy of BRI1 was present in each of the three wheat genomes on the long arm of chromosome 3. Domain structure of BRI1 orthologs among different taxa showed multiple leucine rich repeats (LRRs), an island domain (ID), a juxtamembrane/transmembrane domain (JTMD), a catalytic kinase domain (KD), C and N-Terminal domains. The KD showed the highest level of conservation while the LRRs and JTMD were most variable. Phosphorylation of residues in the juxtamembrane domain, known to be involved in the activation of the KD, is conserved in TaBRI1. While TaBRI1 has well-defined differences in the ID and LRR domains, many residues involved in ligand binding are conserved. The activation loop present in the KD showed 100% conservation in all taxa. Despite residue differences, hydrophobicity was conserved in the BR binding pocket across taxa, suggesting that function may not differ as drastically as residue identity may suggest. Predicted 3D structure of AtBRI1 and TaBRI1 showed a conserved super helical assembly, a feature essential in protein-protein interactions. An unrooted phylogram showed TaBRI1 in the monocot clade to be distinct from that of dicots. New insight in the structure and functions of BRI1 may help in targeting BR pathway for crop improvement.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Chromosomes, Plant/genetics , Evolution, Molecular , Genome, Plant/physiology , Protein Kinases/genetics , Triticum/genetics , Arabidopsis/enzymology , Chromosomes, Plant/metabolism , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Triticum/enzymology
11.
Front Plant Sci ; 5: 657, 2014.
Article in English | MEDLINE | ID: mdl-25505477

ABSTRACT

Phytohormone auxin plays a critical role in modulating plant architecture by creating a gradient regulated via its transporters such as ATP-binding cassette (ABC) B1. Except for Arabidopsis and maize, where it was shown to interrupt auxin transport, ABCB1's presence, structure and function in crop species is not known. Here we describe the structural and putative functional organization of ABCB1 among monocots relative to that of dicots. Identified from various plant species following specific and stringent criteria, ZmABCB1's "true" orthologs sequence identity ranged from 56-90% at the DNA and 75-91% at the predicted amino acid (aa) level. Relative to ZmABCB1, the size of genomic copies ranged from -27 to +1.5% and aa from -7.7 to +0.6%. With the average gene size being similar (5.8 kb in monocots and 5.7 kb in dicots), dicots have about triple the number of introns with an average size of 194 bp (total 1743 bp) compared to 556 bp (total 1667 bp) in monocots. The intron-exon junctions across species were however conserved. N-termini of the predicted proteins were highly variable: in monocots due to mismatches and small deletions of 1-13 aa compared to large, species-specific deletions of up to 77 aa in dicots. The species-, family- and group- specific conserved motifs were identified in the N-terminus and linker region of protein, possibly responsible for the specific functions. The near-identical conserved motifs of Nucleotide Binding Domains (NBDs) in two halves of the protein showed subtle aa changes possibly favoring ATP binding to the N-terminus. Predicted 3-D protein structures showed remarkable similarity with each other and for the residues involved in auxin binding.

12.
PLoS One ; 9(6): e100317, 2014.
Article in English | MEDLINE | ID: mdl-24945438

ABSTRACT

Root traits influence the amount of water and nutrient absorption, and are important for maintaining crop yield under drought conditions. The objectives of this research were to characterize variability of root traits among spring wheat genotypes and determine whether root traits are related to shoot traits (plant height, tiller number per plant, shoot dry weight, and coleoptile length), regions of origin, and market classes. Plants were grown in 150-cm columns for 61 days in a greenhouse under optimal growth conditions. Rooting depth, root dry weight, root: shoot ratio, and shoot traits were determined for 297 genotypes of the germplasm, Cultivated Wheat Collection (CWC). The remaining root traits such as total root length and surface area were measured for a subset of 30 genotypes selected based on rooting depth. Significant genetic variability was observed for root traits among spring wheat genotypes in CWC germplasm or its subset. Genotypes Sonora and Currawa were ranked high, and genotype Vandal was ranked low for most root traits. A positive relationship (R2 ≥ 0.35) was found between root and shoot dry weights within the CWC germplasm and between total root surface area and tiller number; total root surface area and shoot dry weight; and total root length and coleoptile length within the subset. No correlations were found between plant height and most root traits within the CWC germplasm or its subset. Region of origin had significant impact on rooting depth in the CWC germplasm. Wheat genotypes collected from Australia, Mediterranean, and west Asia had greater rooting depth than those from south Asia, Latin America, Mexico, and Canada. Soft wheat had greater rooting depth than hard wheat in the CWC germplasm. The genetic variability identified in this research for root traits can be exploited to improve drought tolerance and/or resource capture in wheat.


Subject(s)
Genetic Variation , Plant Roots/genetics , Quantitative Trait, Heritable , Seasons , Seeds/genetics , Triticum/genetics , Analysis of Variance , Biomass , Genotype , Plant Shoots/genetics
13.
PLoS One ; 8(9): e73314, 2013.
Article in English | MEDLINE | ID: mdl-24019916

ABSTRACT

Successful stand establishment is prerequisite for optimum crop yields. In some low-precipitation zones, wheat (Triticum aestivum L.) is planted as deep as 200 mm below the soil surface to reach adequate soil moisture for germination. To better understand the relationship of coleoptile length and other seed characteristics with emergence from deep planting (EDP), we evaluated 662 wheat cultivars grown around the world since the beginning of the 20(th) century. Coleoptile length of collection entries ranged from 34 to 114 mm. A specialized field EDP test showed dramatic emergence differences among cultivars ranging from 0-66% by 21 days after planting (DAP). Less than 1% of entries had any seedlings emerged by 7 DAP and 43% on day 8. A wide range of EDP within each coleoptile length class suggests the involvement of genes other than those controlling coleoptile length. Emergence was correlated with coleoptile length, but some lines with short coleoptiles ranked among the top emergers. Coleoptiles longer than 90 mm showed no advantage for EDP and may even have a negative effect. Overall, coleoptile length accounted for only 28% of the variability in emergence among entries; much lower than the 60% or greater reported in previous studies. Seed weight had little correlation with EDP. Results show that EDP is largely controlled by yet poorly understood mechanisms other than coleoptile length.


Subject(s)
Cotyledon , Triticum/growth & development
14.
BMC Res Notes ; 2: 93, 2009 May 27.
Article in English | MEDLINE | ID: mdl-19470185

ABSTRACT

BACKGROUND: In the past, rice genome served as a good model for studies involving comparative genomics of grass species. More recently, however, Brachypodium distachyon genome has emerged as a better model system for genomes of temperate cereals including wheat. During the present study, Brachypodium EST contigs were utilized to resolve orthologous relationships among the genomes of Brachypodium, wheat and rice. FINDINGS: Comparative sequence analysis of 3,818 Brachypodium EST (bEST) contigs and 3,792 physically mapped wheat EST (wEST) contigs revealed that as many as 449 bEST contigs were orthologous to 1,154 wEST loci that were bin-mapped on all the 21 wheat chromosomes. Similarly 743 bEST contigs were orthologous to specific rice genome sequences distributed on all the 12 rice chromosomes. As many as 183 bEST contigs were orthologous to both wheat and rice genome sequences, which harbored as many as 17 SSRs conserved across the three species. Primers developed for 12 of these 17 conserved SSRs were used for a wet-lab experiment, which resolved relatively high level of conservation among the genomes of Brachypodium, wheat and rice. CONCLUSION: The present study confirmed that Brachypodium is a better model than rice for analysis of the genomes of temperate cereals like wheat and barley. The whole genome sequence of Brachypodium, which should become available in the near future, will further facilitate greatly the studies involving comparative genomics of cereals.

15.
Article in English | WPRIM (Western Pacific) | ID: wpr-277325

ABSTRACT

Quantitative trait loci (QTL) analysis was conducted in bread wheat for 14 important traits utilizing data from four different mapping populations involving different approaches of QTL analysis. Analysis for grain protein content (GPC) suggested that the major part of genetic variation for this trait is due to environmental interactions. In contrast, pre-harvest sprouting tolerance (PHST) was controlled mainly by main effect QTL (M-QTL) with very little genetic variation due to environmental interactions; a major QTL for PHST was detected on chromosome arm 3AL. For grain weight, one QTL each was detected on chromosome arms 1AS, 2BS and 7AS. QTL for 4 growth related traits taken together detected by different methods ranged from 37 to 40; nine QTL that were detected by single-locus as well as two-locus analyses were all M-QTL. Similarly, single-locus and two-locus QTL analyses for seven yield and yield contributing traits in two populations respectively allowed detection of 25 and 50 QTL by composite interval mapping (CIM), 16 and 25 QTL by multiple-trait composite interval mapping (MCIM) and 38 and 37 QTL by two-locus analyses. These studies should prove useful in QTL cloning and wheat improvement through marker aided selection.


Subject(s)
Bread , Chromosome Mapping , Quantitative Trait Loci , Genetics , Triticum , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...