Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 11(6)2020 Jun 13.
Article in English | MEDLINE | ID: mdl-32545825

ABSTRACT

In this paper, the location of masses and of a piezoelectric patch for energy harvesting reported onto a vibrating cantilever beam is studied and optimized. To this aim, a genetic algorithm is adapted and utilized to optimize the voltage amplitude generated by the piezoelectric patches by choosing attachment mass, attachment mass moment of inertia, attachment location, piezoelectric patch location and force location on the beam as parameters. While an analytical approach is proposed to evaluate the voltage amplitude, a multi-layer perceptron neural network is trained by the derived characteristic matrix to obtain an approximate function for natural frequencies based on the attachment parameters. The trained network is then used in the core of genetic algorithm to find the best optimization variables for any excitation frequency. Numerical simulation by COMSOL Multiphysics finite element software validates the calculated voltage by analytical approach. The optimization method successfully matches the natural frequency of the beam with the excitation frequency which therefore maximizes the output energy. On the other hand, the superiority of the optimized design over the conventional configuration in harvesting the energy at high frequency excitation is also approved.

2.
IEEE Trans Haptics ; 10(3): 382-390, 2017.
Article in English | MEDLINE | ID: mdl-28026784

ABSTRACT

This paper describes a haptic interface that has a uniform response over the entire human tactile frequency range. Structural mechanics makes it very difficult to implement articulated mechanical systems that can transmit high frequency signals. Here, we separated the frequency range into two frequency bands. The lower band is within the first structural mode of the corresponding haptic device while the higher one can be transmitted accurately by a fast actuator operating from conservation of momentum, that is, without reaction forces to the ground. To couple the two systems, we adopted a channel separation approach akin to that employed in the design of acoustic reproduction systems. The two channels are recombined at the tip of the device to give a uniform frequency response from DC to one kHz. In terms of mechanical design, the high-frequency transducer was embedded inside the tip of the main stage so that during operation, the human operator has only to interact with a single finger interface. In order to exemplify the type of application that would benefit from this kind of interface, we applied it to the haptic exploration with microscopic scales objects which are known to behave with very fast dynamics. The novel haptic interface was bilaterally coupled with a micromanipulation platform to demonstrate its capabilities. Operators could feel interaction forces arising from contact as well as those resulting from Brownian motion and could manoeuvre a micro bead in the absence of vision.


Subject(s)
Biophysical Phenomena/physiology , Electromagnetic Phenomena , Equipment Design , Models, Theoretical , Touch Perception/physiology , User-Computer Interface , Humans
3.
PLoS One ; 9(10): e108895, 2014.
Article in English | MEDLINE | ID: mdl-25271636

ABSTRACT

We describe a manually operated, bilateral mechanical scaling instrument that simultaneously magnifies microscopic forces and reduces displacements with quasi-perfect transparency. In contrast with existing micro-teleoperation designs, the system is unconditionally stable for any scaling gains and interaction curves. In the present realization, the work done by the hand is more than a million times that done by a microscopic probe so that one can feel complete interaction cycles with water and compare them to what is felt when an insect leg interacts with a wet surface.


Subject(s)
Touch/physiology , Animals , Insecta , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...