Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 8(54): 92926-92942, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29190967

ABSTRACT

Triple negative breast cancer (TNBC) is a group of cancers whose heterogeneity and shortage of effective drug therapies has prompted efforts to divide these cancers into molecular subtypes. Our computational platform, entitled GenEx-TNBC, applies concepts in systems biology and polypharmacology to prioritize thousands of approved and experimental drugs for therapeutic potential against each molecular subtype of TNBC. Using patient-based and cell line-based gene expression data, we constructed networks to describe the biological perturbation associated with each TNBC subtype at multiple levels of biological action. These networks were analyzed for statistical coincidence with drug action networks stemming from known drug-protein targets, while accounting for the direction of disease modulation for coinciding entities. GenEx-TNBC successfully designated drugs, and drug classes, that were previously shown to be broadly effective or subtype-specific against TNBC, as well as novel agents. We further performed biological validation of the platform by testing the relative sensitivities of three cell lines, representing three distinct TNBC subtypes, to several small molecules according to the degree of predicted biological coincidence with each subtype. GenEx-TNBC is the first computational platform to associate drugs to diseases based on inverse relationships with multi-scale disease mechanisms mapped from global gene expression of a disease. This method may be useful for directing current efforts in preclinical drug development surrounding TNBC, and may offer insights into the targetable mechanisms of each TNBC subtype.

2.
Comb Chem High Throughput Screen ; 20(3): 193-207, 2017.
Article in English | MEDLINE | ID: mdl-28024464

ABSTRACT

BACKGROUND: Cancer-associated metabolites result from cell-wide mechanisms of dysregulation. The field of metabolomics has sought to identify these aberrant metabolites as disease biomarkers, clues to understanding disease mechanisms, or even as therapeutic agents. OBJECTIVE: This study was undertaken to reliably predict metabolites associated with colorectal, esophageal, and prostate cancers. Metabolite and disease biological action networks were compared in a computational platform called MSD-MAP (Multi Scale Disease-Metabolite Association Platform). METHODS: Using differential gene expression analysis with patient-based RNAseq data from The Cancer Genome Atlas, genes up- or down-regulated in cancer compared to normal tissue were identified. Relational databases were used to map biological entities including pathways, functions, and interacting proteins, to those differential disease genes. Similar relational maps were built for metabolites, stemming from known and in silico predicted metabolite-protein associations. The hypergeometric test was used to find statistically significant relationships between disease and metabolite biological signatures at each tier, and metabolites were assessed for multi-scale association with each cancer. Metabolite networks were also directly associated with various other diseases using a disease functional perturbation database. RESULTS: Our platform recapitulated metabolite-disease links that have been empirically verified in the scientific literature, with network-based mapping of jointly-associated biological activity also matching known disease mechanisms. This was true for colorectal, esophageal, and prostate cancers, using metabolite action networks stemming from both predicted and known functional protein associations. CONCLUSION: By employing systems biology concepts, MSD-MAP reliably predicted known cancermetabolite links, and may serve as a predictive tool to streamline conventional metabolomic profiling methodologies.


Subject(s)
Metabolomics/methods , Neoplasms/metabolism , Systems Biology , Colorectal Neoplasms/metabolism , Computational Biology , Databases, Factual , Esophageal Neoplasms/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Prostatic Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...