Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 52(6): 3595-3609, 2020 09.
Article in English | MEDLINE | ID: mdl-31991019

ABSTRACT

Despite evidence for a difference in total brain volume between dyslexic and good readers, no previous neuroimaging study examined differences in allometric scaling (i.e. differences in the relationship between regional and total brain volumes) between dyslexic and good readers. The present study aims to fill this gap by testing differences in allometric scaling and regional brain volume differences in dyslexic and good readers. Object-based morphometry analysis was used to determine grey and white matter volumes of the four lobes, the cerebellum and limbic structures in 130 dyslexic and 106 good readers aged 8-14 years. Data were collected across three countries (France, Poland and Germany). Three methodological approaches were used as follows: principal component analysis (PCA), linear regression and multiple-group confirmatory factor analysis (MGCFA). Difference in total brain volume between good and dyslexic readers was Cohen's d = 0.39. We found no difference in allometric scaling, nor in regional brain volume between dyslexic and good readers. Results of our three methodological approaches (PCA, linear regression and MGCFA) were consistent. This study provides evidence for total brain volume differences between dyslexic and control children, but no evidence for differences in the volumes of the four lobes, the cerebellum or limbic structures, once allometry is taken into account. It also finds no evidence for a difference in allometric relationships between the groups. We highlight the methodological interest of the MGCFA approach to investigate such research issues.


Subject(s)
Dyslexia , Neuroanatomy , Brain Mapping , Child , Dyslexia/diagnostic imaging , Germany , Humans , Magnetic Resonance Imaging , Reading
2.
Int J Biol Macromol ; 74: 439-46, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25562831

ABSTRACT

The formation and deposition of proteinaceous aggregates of amyloid fibrils characterize diverse degenerative diseases, such as Alzheimer's, Parkinson's, and systemic amyloidosis. The presence of these aggregates is associated with clinical manifestations, and various forms of amyloid aggregates have been identified to be cytotoxic. Although the exact mechanism of amyloid toxicity remains to be elucidated, prevention of amyloid fibril formation and aggregation forms a possible therapeutic approach. Nanomaterials possess the potential for such a strategy. Using hen egg white lysozyme (HEWL) as a prototypic amyloid-forming protein, we found a reduction in the aggregation rate of HEWL in the presence of super-paramagnetic iron oxide nanoparticles (SPIONs) with slowing of nucleation and amyloid fibril elongation. HEWL-amyloid had a predominantly fibrillar structure and was toxic to various cells. A significant attenuation of cytotoxicity was observed when cells were treated with SPION-interacted HEWL-amyloid. Ultra-structural differences were observed between the native and SPION-interacted HEWL-amyloids by SEM and TEM imaging. Our findings confirm that SPIONs perturb amyloid fibrillation, thereby reducing the cytotoxicity of amyloid.


Subject(s)
Amyloid/chemistry , Magnetite Nanoparticles/chemistry , Muramidase/chemistry , Protein Aggregates , Amyloid/metabolism , Amyloid/toxicity , Animals , Cell Line , Humans , Kinetics , Mice , Muramidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...