Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Anim Physiol Anim Nutr (Berl) ; 97(3): 405-30, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22512693

ABSTRACT

To meet the ever-increasing demand for animal protein, aquaculture continuously requires new techniques to increase the production yield. However, with every step towards intensification of aquaculture practices, there is an increase in stress level on the animal as well as on the environment. Feeding practices in aqua farming usually plays an important role, and the addition of various additives to a balanced feed formula to achieve better growth is a common practice among the fish and shrimp culturists. Probiotics, also known as 'bio-friendly agents', such as LAB (Lactobacillus), yeasts and Bacillus sp., can be introduced into the culture environment to control and compete with pathogenic bacteria as well as to promote the growth of the cultured organisms. In addition, probiotics are non-pathogenic and non-toxic micro-organisms, having no undesirable side effects when administered to aquatic organisms. Probiotics are also known to play an important role in developing innate immunity among the fishes, and hence help them to fight against any pathogenic bacterias as well as against environmental stressors. The present review is a brief but informative compilation of the different essential and desirable traits of probiotics, their mode of action and their useful effects on fishes. The review also highlights the role of probiotics in helping the fishes to combat against the different physical, chemical and biological stress.


Subject(s)
Animal Feed/analysis , Aquaculture , Fishes , Probiotics/pharmacology , Stress, Physiological/drug effects , Animals
3.
J Anim Physiol Anim Nutr (Berl) ; 97(1): 126-36, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22129348

ABSTRACT

Nine semi-purified diets were prepared with three levels each of protein (300, 350 and 400 g/kg) and lipid (60, 80 and 100 g/kg) and fed ad libitum to Trichogaster trichopterus fingerlings (0.61 ± 0.03 g) in triplicate groups (10 fish/replicate) for 90 days to determine optimum dietary protein and lipid levels. Twenty-seven flow-through fibre-reinforced plastic tanks (200 l capacity each with 100 l of water) were used for rearing the fish. The dietary protein, lipid and their interactions had significant effects (p < 0.05) on weight gain, feed conversion ratio, specific growth rate, nutrient retention and digestibility, but not on hepato- and viscerosomatic indexes (p > 0.05). Dietary protein and the interaction of protein with lipid had significant effect (p < 0.05) on whole-body dry matter, lipid and energy contents, but not on protein and ash contents (p > 0.05). But, the dietary lipid had significant (p < 0.05) effect on whole-body dry matter, protein, lipid and energy contents except the ash contents (p > 0.05). For each level of dietary protein, the increase in dietary lipid resulted significant increase (p < 0.05) in whole-body lipid contents without affecting the protein and ash contents (p > 0.05). Based on better growth and dietary performances, the optimum dietary protein and lipid levels of blue gourami fingerling are 350 and 80 g/kg diet respectively.


Subject(s)
Body Composition/physiology , Dietary Fats/pharmacology , Dietary Proteins/pharmacology , Perciformes/growth & development , Perciformes/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary
4.
J Anim Physiol Anim Nutr (Berl) ; 97(1): 10-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-21981544

ABSTRACT

Based on the nutrient requirement of Trichogaster trichopterus, a fish meal-based basal diet with 350 g/kg diet crude protein and 16.7 MJ/kg energy was formulated, in which the fish meal protein was replaced by surimi by-product protein at 0.0 (control), 12.5, 25, 50, 75 and 100% levels. The formulated diets were fed ad libitum to T. trichopterus fingerlings (4.80 ± 0.03 g) in triplicate groups for 45 days in a closed water system. Eighteen fibre-reinforced plastic tanks with 200 l of water were used for rearing the fish. Weight gain, specific growth rate, feed/gain ratio, protein efficiency ratio, nutrient retention and digestibility (protein and energy) of fish were not affected (p > 0.05) up to 50% fish meal protein replacement level by surimi by-product protein. While whole-body protein content of fish was marginally decreased, the lipid content was increased with increase in surumi by-product incorporation level in the diet. The study results suggest that the fish meal protein, which is scarce and costly nowadays, could be replaced up to 50% by surimi by-product protein in the diet of blue gourami without hampering the growth and nutrient utilization of fish.


Subject(s)
Animal Feed/analysis , Diet/veterinary , Fish Products/analysis , Perciformes/physiology , Animal Nutritional Physiological Phenomena , Animals , Dietary Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...