Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Basic Microbiol ; 63(7): 814-827, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37010016

ABSTRACT

Due to their role in nutrient transmission, arbuscular mycorrhizal fungi (AMF) are widespread plant root symbionts. They may improve plant production by altering plant community structure and function. Therefore, a study was conducted in the state of Haryana to analyze the distribution pattern, diversity, and association of different AMF species with oil-yielding plants. The results of the study revealed the percentage of root colonization, sporulation, and diversity of fungal species associated with the selected 30 oil-yielding plants. The percentage root colonization ranged from 0% to 100%, the highest in Helianthus annuus (100.00 ± 0.00) and Zea mays (100.00 ± 0.00) and the least in Citrus aurantium (11.87 ± 1.43). At the same time, there was no root colonization in the Brassicaceae family. The number of AMF spores present in 50 g of soil samples varied from 17.41 ± 5.28 to 497.2 ± 8.38, with maximum spore population in Glycine max (497.2 ± 8.38) and minimum in Brassica napus (17.41 ± 5.28). Besides, the presence of several species of different genera of AMF was reported in all the studied oil-yielding plants, that is, 60 AMF belonging to six genera viz. Acaulospora, Entrophospora, Glomus, Gigaspora, Sclerocystis, and Scutellospora were observed. Overall, this study will promote AMF usage in oil-yielding plants.


Subject(s)
Glomeromycota , Mycorrhizae , Plant Roots/microbiology , Spores, Fungal , Zea mays/microbiology , Fungi , Soil Microbiology
2.
J Basic Microbiol ; 62(11): 1371-1378, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35996801

ABSTRACT

This study was conducted to investigate the beneficial role of phosphate solubilizing bacteria (PSB) and arbuscular mycorrhizal fungi (AMF) in improving eggplant fruits' biochemical composition and mineral content. The plants were treated with AMF Acaulospora laevis, and bacteria Pseudomonas fluorescens, and the corresponding variations were measured for mineral content (Ca, Fe, Mg, K, and P), biochemical parameters (dry matter, total soluble solid [TSS], phenolics, chlorogenic acid, vitamin C) along with arbuscular mycorrhiza spore number, and percentage of root colonization. The AMF and PSB-mediated soil and root-associated nutrients become available for uptake via mineralization, solubilization, and mobilization, primarily through the generation of organic acids and P-hydrolysing enzymes by the microbes. All the treatments showed a significant increase in the concentrations of different biochemical components. However, the combination of both A. laevis and P. fluorescens was found to be the most efficient. These results indicated the possibility of A. laevis and P. fluorescens being used as biofertilizers.


Subject(s)
Mycorrhizae , Solanum melongena , Mycorrhizae/metabolism , Phosphates/metabolism , Solanum melongena/metabolism , Bacteria/metabolism , Soil Microbiology , Soil , Minerals/metabolism , Plant Roots/microbiology
3.
Front Genet ; 11: 202, 2020.
Article in English | MEDLINE | ID: mdl-32211033

ABSTRACT

[This corrects the article DOI: 10.3389/fgene.2017.00200.].

4.
Front Pharmacol ; 9: 311, 2018.
Article in English | MEDLINE | ID: mdl-29946253

ABSTRACT

Water constitutes and sustains life; however, its pollution afflicts its necessity, further worsening its scarcity. Coliform is one of the largest groups of bacteria evident in fecally polluted water, a major public health concern. Coliform thrive as commensals in the gut of warm-blooded animals, and are indefinitely passed through their feces into the environment. They are also called as model organisms as their presence is indicative of the prevalence of other potential pathogens, thus coliform are and unanimously employed as adept indicators of fecal pollution. As only a limited accessible source of fresh water is available on the planet, its contamination severely affects its usability. Coliform densities vary geographically and seasonally which leads to the lack of universally uniform regulatory guidelines regarding water potability often leads to ineffective detection of these model organisms and the misinterpretation of water quality status. Remedial measures such as disinfection, reducing the nutrient concentration or re-population doesn't hold context in huge lotic ecosystems such as freshwater rivers. There is also an escalating concern regarding the prevalence of multi-drug resistance in coliforms which renders antibiotic therapy incompetent. Antimicrobials are increasingly used in household, clinical, veterinary, animal husbandry and agricultural settings. Sub-optimal concentrations of these antimicrobials are unintentionally but regularly dispensed into the environment through seepages, sewages or runoffs from clinical or agricultural settings substantially adding to the ever-increasing pool of antibiotic resistance genes. When present below their minimum inhibitory concentration (MIC), these antimicrobials trigger the transfer of antibiotic-resistant genes that the coliform readily assimilate and further propagate to pathogens, the severity of which is evidenced by the high Multiple Antibiotic Resistance (MAR) index shown by the bacterial isolates procured from the environmental. This review attempts to assiduously anthologize the use of coliforms as water quality standards, their existent methods of detection and the issue of arising multi-drug resistance in them.

5.
Front Genet ; 8: 90, 2017.
Article in English | MEDLINE | ID: mdl-28713421

ABSTRACT

Transfer rRNAs are important molecules responsible for the translation event during protein synthesis. tRNAs are widespread found in unicellular to multi-cellular organisms. Analysis of tRNA gene family members in Oryza sativa revealed the presence of 750 tRNA genes distributed unevenly in different chromosomes. The length of O. sativa tRNAs genes were ranged from 66 to 91 nucleotides encoding 52 isoacceptor in total. tRNASer found in chromosome 8 of O. sativa encoded only 66 nucleotides which is the smallest tRNA of O. sativa and to our knowledge, this is the smallest gene of eukaryotic lineage reported so far. Analyses revealed the presence of several novel/pseudo tRNA genes in O. sativa which are reported for the first time. Multiple sequence alignment of tRNAs revealed the presence of family specific conserved consensus sequences. Functional study of these novel tRNA and family specific conserved consensus sequences will be crucial to decipher their importance in biological events. The rate of transition of O. sativa tRNA was found to be higher than the rate of transversion. Evolutionary study revealed, O. sativa tRNAs were evolved from the lineages of multiple common ancestors. Duplication and loss study of tRNAs genes revealed, majority of the O. sativa tRNA were duplicated and 17 of them were found to be undergone loss during the evolution. Orthology and paralogy study showed, the majority of O. sativa tRNA were paralogous and only a few of tRNASer were found to contain orthologous tRNAs.

6.
Front Microbiol ; 8: 626, 2017.
Article in English | MEDLINE | ID: mdl-28458659

ABSTRACT

Silver nanoparticles play an integral part in the evolution of new antimicrobials against the broad ranges of pathogenic microorganisms. Recently, biological synthesis of metal nanoparticles using plant extracts has been successfully consummated. In the present study, the biosynthesis of silver nanoparticles (AgNPs) was conducted using the leaf extract of plant Protium serratum, having novel ethnomedicinal. The synthesized AgNPs were characterized using UV-Visible spectroscopy, dynamic light scattering spectroscopy (DLS), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy. The DLS study revealed the surface charge of the resulted nanoparticles that was highly negative, i.e., -25.0 ± 7.84 mV and the size was 74.56 ± 0.46 nm. The phytochemical and FTIR analysis confirmed the role of water-soluble phyto-compounds for the reduction of silver ions to silver nanoparticles. The potential antibacterial activity of AgNPs was studied against the food borne pathogens viz. Pseudomonas aeruginosa (IC50 = 74.26 ± 0.14 µg/ml), Escherichia coli (IC50 = 84.28 ± 0.36 µg/ml), Bacillus subtilis (IC50 = 94.43 ± 0.4236 µg/ml). The in vitro antioxidant potential of AgNPs was evaluated using 1, 1-diphenyl-2-picryl-hydrazil (IC50 = 6.78 ± 0.15 µg/ml) and hydroxyl radical assay (IC50 = 89.58 ± 1.15 µg/ml). In addition, the cytotoxicity of AgNPs was performed against fibroblast cell line L-929 to evaluate their biocompatibility. The overall results of the present investigation displayed the potential use of P. serratum leaf extract as a good bio-resource for the biosynthesis of AgNPs and their implementation in diverse applications, specifically as antibacterial agent in food packaging and preservation to combat against various food borne pathogenic bacteria along with its pharmaceutical and biomedical applications.

7.
Front Mol Biosci ; 4: 14, 2017.
Article in English | MEDLINE | ID: mdl-28367437

ABSTRACT

In this experiment, biosynthesized silver nanoparticles (AgNPs) were synthesized using aqueous leaf extract of Erythrina suberosa (Roxb.). The biosynthesis of silver nanoparticle was continuously followed by UV-vis spectrophotometric analysis. The response of the phytoconstituents resides in E. suberusa during synthesis of stable AgNPs were analyzed by ATR- fourier-transform infrared spectroscopy. Further, the size, charge, and polydispersity nature of AgNPs were studied using dynamic light scattering spectroscopy. The morphology of the nanoparticles was determined by scanning electron microscopy. Current result shows core involvement of plant extracts containing glycosides, flavonoids, and phenolic compounds played a crucial role in the biosynthesis of AgNPs. The antimicrobial activities of silver nanoparticles were evaluated against different pathogenic bacterium and fungi. The antioxidant property was studied by radical scavenging (DPPH) assay and cytotoxic activity was evaluated against A-431 osteosarcoma cell line by MTT assay. The characteristics of the synthesized silver nanoparticles suggest their application as a potential antimicrobial and anticancer agent.

8.
Front Genet ; 8: 200, 2017.
Article in English | MEDLINE | ID: mdl-29321793

ABSTRACT

Transfer RNA (tRNA) plays a central role in protein synthesis and acts as an adaptor molecule between an mRNA and an amino acid. A tRNA has an L-shaped clover leaf-like structure and contains an acceptor arm, D-arm, D-loop, anti-codon arm, anti-codon loop, variable loop, Ψ-arm and Ψ-loop. All of these arms and loops are important in protein translation. Here, we aimed to delineate the genomic architecture of these arms and loops in cyanobacterial tRNA. Studies from tRNA sequences from 61 cyanobacterial species showed that, except for few tRNAs (tRNAAsn, tRNALeu, tRNAGln, and tRNAMet), all contained a G nucleotide at the 1st position in the acceptor arm. tRNALeu and tRNAMet did not contain any conserved nucleotides at the 1st position whereas tRNAAsn and tRNAGln contained a conserved U1 nucleotide. In several tRNA families, the variable region also contained conserved nucleotides. Except for tRNAMet and tRNAGlu, all other tRNAs contained a conserved A nucleotide at the 1st position in the D-loop. The Ψ-loop contained a conserved U1-U2-C3-x-A5-x-U7 sequence, except for tRNAGly, tRNAAla, tRNAVal, tRNAPhe, tRNAThr, and tRNAGln in which the U7 nucleotide was not conserved. However, in tRNAAsp, the U7 nucleotide was substituted with a C7 nucleotide. Additionally, tRNAArg, tRNAGly, and tRNALys of cyanobacteria contained a group I intron within the anti-codon loop region. Maximum composite likelihood study on the transition/transversion of cyanobacterial tRNA revealed that the rate of transition was higher than the rate of transversion. An evolutionary tree was constructed to understand the evolution of cyanobacterial tRNA and analyses revealed that cyanobacterial tRNA may have evolved polyphyletically with high rate of gene loss.

9.
Front Microbiol ; 7: 2170, 2016.
Article in English | MEDLINE | ID: mdl-28144235

ABSTRACT

The aflatoxin producing fungi, Aspergillus spp., are widely spread in nature and have severely contaminated food supplies of humans and animals, resulting in health hazards and even death. Therefore, there is great demand for aflatoxins research to develop suitable methods for their quantification, precise detection and control to ensure the safety of consumers' health. Here, the chemistry and biosynthesis process of the mycotoxins is discussed in brief along with their occurrence, and the health hazards to humans and livestock. This review focuses on resources, production, detection and control measures of aflatoxins to ensure food and feed safety. The review is informative for health-conscious consumers and research experts in the fields. Furthermore, providing knowledge on aflatoxins toxicity will help in ensure food safety and meet the future demands of the increasing population by decreasing the incidence of outbreaks due to aflatoxins.

10.
Front Plant Sci ; 6: 1146, 2015.
Article in English | MEDLINE | ID: mdl-26734045

ABSTRACT

Calcium ions are considered ubiquitous second messengers in eukaryotic signal transduction pathways. Intracellular Ca(2+) concentration are modulated by various signals such as hormones and biotic and abiotic stresses. Modulation of Ca(2+) ion leads to stimulation of calcium dependent protein kinase genes (CPKs), which results in regulation of gene expression and therefore mediates plant growth and development as well as biotic and abiotic stresses. Here, we reported the CPK gene family of 40 different plant species (950 CPK genes) and provided a unified nomenclature system for all of them. In addition, we analyzed their genomic, biochemical and structural conserved features. Multiple sequence alignment revealed that the kinase domain, auto-inhibitory domain and EF-hands regions of regulatory domains are highly conserved in nature. Additionally, the EF-hand domains of higher plants were found to contain four D-x-D and two D-E-L motifs, while lower eukaryotic plants had two D-x-D and one D-x-E motifs in their EF-hands. Phylogenetic analysis showed that CPK genes are clustered into four different groups. By studying the CPK gene family across the plant lineage, we provide the first evidence of the presence of D-x-D motif in the calcium binding EF-hand domain of CPK proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...