Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37050292

ABSTRACT

Polymers containing cyclic derivatives are a new class of macromolecular topologies with unique properties. Herein, we report the synthesis of a triblock copolymer containing a spirocyclic mid-block. To achieve this, a spirocyclic polystyrene (cPS) mid-block was first synthesized by atom transfer radical polymerization (ATRP) using a tetra-functional initiator, followed by end-group azidation and a copper (I)-catalyzed azide-alkyne cycloaddition reaction. The resulting functional cPS was purified using liquid chromatography techniques. Following the esterification of cPS, a macro-ATRP initiator was obtained and used to synthesize a poly (methyl methacrylate)-block-cPS-block-poly (methyl methacrylate) (PMMA-b-cPS-b-PMMA) triblock copolymer. This work provides a synthetic strategy for the preparation of a spirocyclic macroinitiator for the ATRP technique and as well as liquid chromatographic techniques for the purification of (spiro) cyclic polymers.

2.
Membranes (Basel) ; 11(6)2021 Jun 20.
Article in English | MEDLINE | ID: mdl-34203084

ABSTRACT

A class of phenolphthalein anilide (PA)-based poly(ether sulfone) multiblock copolymers containing pendant quaternary ammonium (QA) and imidazolium (IM) groups were synthesized and evaluated as anion exchange membrane (AEM) materials. The AEMs were flexible and mechanically strong with good thermal stability. The ionomeric multiblock copolymer AEMs exhibited well-defined hydrophobic/hydrophilic phase-separated morphology in small-angle X-ray scattering and atomic force microscopy. The distinct nanophase separated membrane morphology in the AEMs resulted in higher conductivity (IECw = 1.3-1.5 mequiv./g, σ(OH-) = 30-38 mS/cm at 20 °C), lower water uptake and swelling. Finally, the membranes were compared in terms of microbial fuel cell performances with the commercial cation and anion exchange membranes. The membranes showed a maximum power density of ~310 mW/m2 (at 0.82 A/m2); 1.7 and 2.8 times higher than the Nafion 117 and FAB-PK-130 membranes, respectively. These results demonstrated that the synthesized AEMs were superior to Nafion 117 and FAB-PK-130 membranes.

3.
Macromol Rapid Commun ; 41(20): e2000399, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32902024

ABSTRACT

Redox-initiated reversible addition-fragmentation chain transfer (RAFT) miniemulsion polymerizations are successfully conducted with an employment of trithiocarbonate-based macro-RAFT agents and surfactant. Two macro-RAFT agents-hydrophilic poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMA27 ) and amphiphilic poly(poly(ethylene glycol) methyl ether methacrylate)-b-polystyrene (PPEGMA27 -b-PS33 )- are examined for the miniemulsion polymerization of styrene. The use of PPEGMA27 (in the presence of sodium dodecyl sulfate (SDS)) results in a slow polymerization rate with a broad particle size. In the absence of SDS, the use of PPEGMA27 -b-PS33 results in a broad particle size distribution due to its inability to form uniform initial droplets whereas the same amphiphilic block copolymer in the presence of SDS yields resulting products with a uniform particle size distribution. The latter exhibits a fashion of controlled polymerization with a high consumption of monomer (98% in 100 min) and a narrow molecular weight distribution throughout the polymerization. This is attributed to the formation of uniform droplets facilitated by SDS in a miniemulsion. The amphiphilic macro-RAFT agent is able to anchor efficiently on the monomer droplet or particle/water interface and form stabilized particles of well-defined PPEGMA27 -b-PS block copolymer, confirmed using dynamic light scattering and transmission electron micrographs.


Subject(s)
Polymers , Polymethacrylic Acids , Oxidation-Reduction , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...