Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(4): 5718-5728, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439290

ABSTRACT

Visible-light photonic integrated circuits (PICs) promise scalability for technologies such as quantum information, biosensing, and scanning displays, yet extending large-scale silicon photonics to shorter wavelengths has been challenging due to the higher losses. Silicon nitride (SiN) has stood out as the leading platform for visible photonics, but the propagation losses strongly depend on the film's deposition and fabrication processes. Current loss measurement techniques cannot accurately distinguish between absorption and surface scattering, making it difficult to identify the dominant loss source and reach the platform's fundamental limit. Here we demonstrate an ultra-low loss, high-confinement SiN platform that approaches the limits of absorption and scattering across the visible spectrum. Leveraging the sensitivity of microresonators to loss, we probe and discriminate each loss contribution with unparalleled sensitivity, and derive their fundamental limits and scaling laws as a function of wavelength, film properties and waveguide parameters. Through the design of the waveguide cross-section, we show how to approach the absorption limit of the platform, and demonstrate the lowest propagation losses in high-confinement SiN to date across the visible spectrum. We envision that our techniques for loss characterization and minimization will contribute to the development of large-scale, dense PICs that redefine the loss limits of integrated platforms across the electromagnetic spectrum.

2.
Nat Commun ; 14(1): 6675, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37865707

ABSTRACT

Total internal reflection (TIR) governs the guiding mechanisms of almost all dielectric waveguides and therefore constrains most of the light in the material with the highest refractive index. The few options available to access the properties of lower-index materials include designs that are either lossy, periodic, exhibit limited optical bandwidth or are restricted to subwavelength modal volumes. Here, we propose and demonstrate a guiding mechanism that leverages symmetry in multilayer dielectric waveguides as well as evanescent fields to strongly confine light in low-index materials. The proposed waveguide structures exhibit unusual light properties, such as uniform field distribution with a non-Gaussian spatial profile and scale invariance of the optical mode. This guiding mechanism is general and can be further extended to various optical structures, employed for different polarizations, and in different spectral regions. Therefore, our results can have huge implications for integrated photonics and related technologies.

3.
Nat Commun ; 11(1): 2545, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32439917

ABSTRACT

Energy transferred via thermal radiation between two surfaces separated by nanometer distances can be much larger than the blackbody limit. However, realizing a scalable platform that utilizes this near-field energy exchange mechanism to generate electricity remains a challenge. Here, we present a fully integrated, reconfigurable and scalable platform operating in the near-field regime that performs controlled heat extraction and energy recycling. Our platform relies on an integrated nano-electromechanical system that enables precise positioning of a thermal emitter within nanometer distances from a room-temperature germanium photodetector to form a thermo-photovoltaic cell. We demonstrate over an order of magnitude enhancement of power generation (Pgen ~ 1.25 µWcm-2) in our thermo-photovoltaic cell by actively tuning the gap between a hot-emitter (TE ~ 880 K) and the cold photodetector (TD ~ 300 K) from ~ 500 nm down to ~ 100 nm. Our nano-electromechanical system consumes negligible tuning power (Pgen/PNEMS ~ 104) and relies on scalable silicon-based process technologies.

4.
Opt Lett ; 45(7): 1934-1937, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32236036

ABSTRACT

Compact beam steering in the visible spectral range is required for a wide range of emerging applications, such as augmented and virtual reality displays, optical traps for quantum information processing, biological sensing, and stimulation. Optical phased arrays (OPAs) can shape and steer light to enable these applications with no moving parts on a compact chip. However, OPA demonstrations have been mainly limited to the near-infrared spectral range due to the fabrication and material challenges imposed by the shorter wavelengths. Here, we demonstrate the first chip-scale phased array operating at blue wavelengths (488 nm) using a high-confinement silicon nitride platform. We use a sparse aperiodic emitter layout to mitigate fabrication constraints at this short wavelength and achieve wide-angle beam steering over a 50° field of view with a full width at half-maximum beam size of 0.17°. Large-scale integration of this platform paves the way for fully reconfigurable chip-scale three-dimensional volumetric light projection across the entire visible range.

5.
Nat Biomed Eng ; 4(2): 223-231, 2020 02.
Article in English | MEDLINE | ID: mdl-32051578

ABSTRACT

The use of nanophotonics to rapidly and precisely reconfigure light beams for the optical stimulation of neurons in vivo has remained elusive. Here we report the design and fabrication of an implantable silicon-based probe that can switch and route multiple optical beams to stimulate identified sets of neurons across cortical layers and simultaneously record the produced spike patterns. Each switch in the device consists of a silicon nitride waveguide structure that can be rapidly (<20 µs) reconfigured by electrically tuning the phase of light. By using an eight-beam probe, we show in anaesthetized mice that small groups of single neurons can be independently stimulated to produce multineuron spike patterns at sub-millisecond precision. We also show that a probe integrating co-fabricated electrical recording sites can simultaneously optically stimulate and electrically measure deep-brain neural activity. The technology is scalable, and it allows for beam focusing and steering and for structured illumination via beam shaping. The high-bandwidth optical-stimulation capacity of the device might facilitate the probing of the spatiotemporal neural codes underlying behaviour.


Subject(s)
Deep Brain Stimulation/instrumentation , Deep Brain Stimulation/methods , Hippocampus/physiology , Nanotechnology , Neurons/physiology , Visual Cortex/physiology , Action Potentials , Animals , Equipment Design , Female , Mice, Transgenic , Signal Processing, Computer-Assisted , Silicon
6.
Opt Express ; 27(15): 20305-20310, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31510127

ABSTRACT

The mass production and commercialization of integrated photonics have been slowed down by the high cost of packaging its optical interfaces. We show a plug-and-play connector between a fiber and a nanophotonic waveguide consisting of a 3D polymer structure with a fiber entrance port that simultaneously achieves mechanical and optical passive alignment with tolerance beyond ±10 µm to the fiber input position. We take advantage of a mechanical and optical co-design, analogous to commercial fiber-to-fiber connectors. We fabricate the plug-and-play couplers using 3D nanoprinting directly on foundry fabricated diffraction grating couplers. We measure an average of only 0.05 dB excess coupling loss between a single mode fiber and a high confinement silicon waveguide in addition to the inherent grating coupler loss. Our coupling platform offers a passive plug-and-play solution for scalable integrated photonics fiber-chip packaging.

7.
Sci Rep ; 8(1): 10756, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30018316

ABSTRACT

Ultra-compact micro-optical elements for endoscopic instruments and miniaturized microscopes allow for non-invasive and non-destructive examination of microstructures and tissues. With sub-cellular level resolution such instruments could provide immediate diagnosis that is virtually consistent with a histologic diagnosis enabling for example to differentiate the boundaries between malignant and benign tissue. Such instruments are now being developed at a rapid rate; however, current manufacturing technologies limit the instruments to very large sizes, well beyond the sub-mm sizes required in order to ensure minimal tissue damage. We show here a platform based on planar microfabrication and soft lithography that overcomes the limitation of current optical elements enabling single cell resolution. We show the ability to resolve lithographic features that are as small as 2 µm using probes with a cross section that is only 100 microns in size. We also show the ability to image individual activated neural cells in brain slices via our fabricated probe.

8.
Opt Express ; 26(3): 2528-2534, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29401791

ABSTRACT

Current silicon photonics phased arrays based on waveguide gratings enable beam steering with no moving parts. However, they suffer from a trade-off between beam divergence and field of view. Here, we show a platform based on silicon-nitride/silicon that achieves simultaneously minimal beam divergence and maximum field of view while maintaining performance that is robust to fabrication variations. In addition, in order to maximize the emission from the entire length of the grating, we design the grating's strength by varying its duty cycle (apodization) to emit uniformly. We fabricate a millimeter long grating emitter with diffraction-limited beam divergence of 0.089°.

9.
Opt Express ; 25(11): 12109-12120, 2017 May 29.
Article in English | MEDLINE | ID: mdl-28786569

ABSTRACT

Suspended optical microresonators are promising devices for on-chip photonic applications such as radio-frequency oscillators, optical frequency combs, and sensors. Scaling up these devices demands the capability to tune the optical resonances in an integrated manner. Here, we design and experimentally demonstrate integrated on-chip thermo-optic tuning of suspended microresonators by utilizing suspended wire bridges and microheaters. We demonstrate the ability to tune the resonance of a suspended microresonator in silicon nitride platform by 9.7 GHz using 5.3 mW of heater power. The loaded optical quality factor (QL ~92,000) stays constant throughout the detuning. We demonstrate the efficacy of our approach by completely turning on and off the optical coupling between two evanescently coupled suspended microresonators.

10.
Nat Commun ; 8: 14010, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28106036

ABSTRACT

Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing.

11.
Opt Express ; 24(12): 13044-50, 2016 Jun 13.
Article in English | MEDLINE | ID: mdl-27410323

ABSTRACT

We demonstrate the first low-noise mid-IR frequency comb source using a silicon microresonator. Our observation of strong Raman scattering lines in the generated comb suggests that interplay between Raman and four-wave mixing plays a role in the generated low-noise state. In addition, we characterize, the intracavity comb generation dynamics using an integrated PIN diode, which takes advantage of the inherent three-photon absorption process in silicon.

12.
Nat Commun ; 6: 6299, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25708922

ABSTRACT

Optical frequency combs are a revolutionary light source for high-precision spectroscopy because of their narrow linewidths and precise frequency spacing. Generation of such combs in the mid-infrared spectral region (2-20 µm) is important for molecular gas detection owing to the presence of a large number of absorption lines in this wavelength regime. Microresonator-based frequency comb sources can provide a compact and robust platform for comb generation that can operate with relatively low optical powers. However, material and dispersion engineering limitations have prevented the realization of an on-chip integrated mid-infrared microresonator comb source. Here we demonstrate a complementary metal-oxide-semiconductor compatible platform for on-chip comb generation using silicon microresonators, and realize a broadband frequency comb spanning from 2.1 to 3.5 µm. This platform is compact and robust and offers the potential to be versatile for use outside the laboratory environment for applications such as real-time monitoring of atmospheric gas conditions.

13.
Adv Mater ; 24(46): 6169-74, 2012 Dec 04.
Article in English | MEDLINE | ID: mdl-22968762

ABSTRACT

Triplet exciton dissociation in singlet exciton fission devices with three classes of acceptors are characterized: fullerenes, perylene diimides, and PbS and PbSe colloidal nanocrystals. Using photocurrent spectroscopy and a magnetic field probe it is found that colloidal PbSe nanocrystals are the most promising acceptors, capable of efficient triplet exciton dissociation and long wavelength absorption.


Subject(s)
Solar Energy , Colloids/chemistry , Fullerenes/chemistry , Imides/chemistry , Lead/chemistry , Magnetic Fields , Metal Nanoparticles/chemistry , Perylene/analogs & derivatives , Perylene/chemistry , Quantum Theory , Selenium Compounds/chemistry , Semiconductors , Sulfides/chemistry
14.
Nano Lett ; 11(4): 1495-8, 2011 Apr 13.
Article in English | MEDLINE | ID: mdl-21355536

ABSTRACT

Singlet exciton fission is an efficient multiexciton generation process in organic molecules. But two concerns must be satisfied before it can be exploited in low-cost solution-processed organic solar cells. Fission must be combined with longer wavelength absorption in a structure that can potentially surpass the single junction limit, and its efficiency must be demonstrated in nanoscale domains within blended devices. Here, we report organic solar cells comprised of tetracene, copper phthalocyanine, and the buckyball C(60). Short wavelength light generates singlet excitons in tetracene. These are subsequently split into two triplet excitons and transported through the phthalocyanine. In addition, the phthalocyanine absorbs photons below the singlet exciton energy of tetracene. To test tetracene in nanostructured blends, we fabricate coevaporated bulk heterojunctions and multilayer heterojunctions of tetracene and C(60). We measure a singlet fission efficiency of (71 ± 18)%, demonstrating that exciton fission can efficiently compete with exciton dissociation on the nanoscale.


Subject(s)
Electric Power Supplies , Organic Chemicals/chemistry , Solar Energy , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...