Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Adv ; 3(20): 7484-7500, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36324871

ABSTRACT

Clays have been used as early as 2500 BC in human civilization for medicinal purposes. The ease of availability, biocompatibility, and versatility of these unique charged 2D structures abundantly available in nature have enabled the extensive applications of clays in human history. Recent advances in the use of clays in nanostructures and as components of polymer clay nanocomposites have exponentially expanded the use of clays in medicine. This review covers the details of structures and biomedical applications of several common clays, including montmorillonite, LAPONITE®, kaolinite, and halloysite. Here we describe the applications of these clays in wound dressings as hemostatic agents in drug delivery of drugs for cancer and other diseases and tissue engineering. Also reviewed are recent experimental and modeling studies that elucidate the impact of clay structures on cellular processes and cell adhesion processes. Various mechanisms of clay-mediated bioactivity, including protein localization, modulation of cell adhesion, biomineralization, and the potential of clay nanoparticles to impact cell differentiation, are presented. We also review the current developments in understanding the impact of clays on cellular responses. This review also elucidates new emerging areas of use of nanoclays in osteogenesis and the development of in vitro models of bone metastasis of cancer.

2.
Int J Biol Macromol ; 185: 525-534, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34174308

ABSTRACT

Hemorrhage is a leading cause of preventable death in both military combat and civilian accidents. To overcome these challenges, an affordable and effective bandage is must required substance. A novel strategy is reported for developing chitosan-casein (CC) based self-assembled nanofibrous polyelectrolyte complex (PEC) for rapid blood clotting. The amide group (1630 cm-1) and phosphate group (910 cm-1) of chitosan-casein can form PEC at pH 8.2 ± 0.2. The PECs contain intertwined nanofibers (≤100 nm diameter) with a high surface area. Increasing chitosan percentage from 30% (CC30) to 50% (CC50) or 70% (CC70) results, increase in zeta potential of PEC from -9.14 ± 3.3 to 7.46 ± 3.7 and 14.8 ± 3.3 mV, respectively. Under in vitro conditions, the CC30, CC50, and CC70 PECs allow platelet adhesion and rapidly absorbs blood fluid to form mechanically stable blood clots within 9 ± 3, 16 ± 3, and 30 ± 4 s, respectively, which are better than Celox™ (90 ± 3 s). In vivo application of PEC (CC50) causes clotting within 37 ± 6 s of large (1 cm) arterial incision in rabbit models. The PEC is biocompatible with promising hemostatic efficiency. This is the first report of nanofibrous PEC from chitosan and casein for rapid clotting, to the best of our knowledge.


Subject(s)
Caseins/chemistry , Chitosan/administration & dosage , Hemorrhage/drug therapy , Hemostatics/administration & dosage , Animals , Bandages , Cell Adhesion , Chitosan/chemistry , Chitosan/pharmacology , Hemorrhage/etiology , Hemostasis , Hemostatics/chemistry , Hemostatics/pharmacology , Hydrogen-Ion Concentration , Nanofibers , Polyelectrolytes , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...