Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(18): 4965-4975, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38690787

ABSTRACT

Conjugated and processable self-standing vinylene-linked covalent organic framework membranes (COFMs) are highly demanding for photonics and optoelectronics. In this work, we have fabricated the first cyclotriphosphazene (CTP) cored vinylene-linked self-standing COFM (CTP-PDAN). For comparison purposes, we have successfully fabricated the imine-linked congener (CTP-PDA). Leveraging the inherent nonlinear optical (NLO) response of the CTP core, both membranes were directly mounted to evaluate NLO parameters using the open-aperture (OA) Z-scan technique. Direct measurement of NLO responses on membranes is advantageous and free from solvent and scattering effects, making it a more practical approach compared to the conventional dispersion mode. The OA Z-scan transmission yields a reverse saturable absorption signature exhibiting a higher NLO absorption coefficient (ß) of 58.37 cm/GW for CTP-PDAN, compared to that of the imine-linked CTP-PDA COFM (ß = 8.5 cm/GW). These results can be correlated to the efficient conjugation through the vinylene linkage in CTP-PDAN compared to the imine linked congener.

2.
Adv Mater ; 36(16): e2312960, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38146892

ABSTRACT

Processable covalent organic framework membranes (COFM) are emerging as potential semiconducting materials for device applications. Nevertheless, the fabrication of crystalline and free-standing 3D COFMs is challenging. In this work, a unique time and solvent-efficient triple-layer-dual interfacial (TLDI) approach for the simultaneous synthesis of two 3D COFMs from a single system is developed. Besides, for the first time, the optical conductivity of these free-standing 3D COFMs is analyzed using terahertz (THz) spectroscopy in transmission mode. Interestingly, these membranes show excellent transmittance at THz frequencies with very high intrinsic THz conductivities. The evaluated scattering time and plasma frequency of the free carriers of the COFMs are highly promising for future applications in optoelectronic devices in THz frequencies.

3.
Angew Chem Int Ed Engl ; 62(18): e202218974, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36729044

ABSTRACT

The vastness of organic synthetic strategies and knowledge of reticular chemistry have made covalent organic frameworks (COFs) one of the most chemically and structurally diverse class of materials with potential applications ranging from gas storage, molecular separation, and catalysis to energy storage and magnetism. Recently, this class of porous materials has garnered increasing interest as potential nonlinear optical (NLO) materials. Traditionally, inorganic crystals, small-molecule organic chromophores, and oligomers have been studied for their NLO response. Nevertheless, COFs offer significant advantages over existing NLO materials in terms of higher mechanical strength, thermochemical stability, and extended conjugation. Herein, we discuss crucial aspects, terminology, and measurement techniques related to NLO, followed by a critical analysis of the design principles for COFs with NLO response. Furthermore, we touch on selected potential applications of these NLO materials. Finally, future prospects and challenges of COFs as NLO materials are discussed.

4.
Macromol Rapid Commun ; 44(8): e2200950, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36625406

ABSTRACT

Organic frameworks with carbon-carbon (CC) linkage are an important class of materials owing to their outstanding chemical stability and extended π-electron delocalization resulting in unique optoelectronic properties. In the first part of this review article, the design principles for the bottom-up synthesis of 2D and 3D sp/sp2 CC linked organic frameworks are summarized. Representative reaction methodologies, such as Knoevenagel condensation, Aldol condensation, Horner-Wadsworth-Emmons reaction, Wittig reaction, and coupling reactions (Ullmann, Suzuki, Heck, Yamamoto, etc.) are included. This is discussed in the context of their reaction mechanism, reaction dynamics, and whether and why resulting in an amorphous or crystalline product. This is followed by a discussion of different state-of-the art bottom-up synthesis methodologies, like solvothermal, interfacial, and solid-state synthesis. In the second part, the structure-property relationships in CC linked organic frameworks with representative examples of organocatalysis, photo(electro)catalysis, energy storage and conversion, magnetism, and molecular storage and separation are analyzed. The importance of linkage type, building blocks, topology, and crystallinity of the framework material in connection with the structure-property relationship is highlighted. Finally, brief concluding remarks are presented based on the key development of bottom-up synthetic methods and provide perspectives for future development in this field.


Subject(s)
Carbon , Electrons , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...