Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 18399, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33110147

ABSTRACT

Activation of GABAA receptors causes in immature neurons a functionally relevant decrease in the intracellular Cl- concentration ([Cl-]i), a process termed ionic plasticity. Amount and duration of ionic plasticity depends on kinetic properties of [Cl-]i homeostasis. In order to characterize the capacity of Cl- accumulation and to quantify the effect of persistent GABAergic activity on [Cl-]i, we performed gramicidin-perforated patch-clamp recordings from CA3 pyramidal neurons of immature (postnatal day 4-7) rat hippocampal slices. These experiments revealed that inhibition of NKCC1 decreased [Cl-]i toward passive distribution with a time constant of 381 s. In contrast, active Cl- accumulation occurred with a time constant of 155 s, corresponding to a rate of 15.4 µM/s. Inhibition of phasic GABAergic activity had no significant effect on steady state [Cl-]i. Inhibition of tonic GABAergic currents induced a significant [Cl-]i increase by 1.6 mM, while activation of tonic extrasynaptic GABAA receptors with THIP significantly reduced [Cl-]i.. Simulations of neuronal [Cl-]i homeostasis supported the observation, that basal levels of synaptic GABAergic activation do not affect [Cl-]i. In summary, these results indicate that active Cl--uptake in immature hippocampal neurons is sufficient to maintain stable [Cl-]i at basal levels of phasic and to some extent also to compensate tonic GABAergic activity.


Subject(s)
Chlorides/metabolism , Pyramidal Cells/metabolism , Solute Carrier Family 12, Member 2/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Rats
2.
Sci Rep ; 6: 23196, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26987404

ABSTRACT

Cl(-) plays a crucial role in neuronal function and synaptic inhibition. However, the impact of neuronal morphology on the diffusion and redistribution of intracellular Cl(-) is not well understood. The role of spines in Cl(-) diffusion along dendritic trees has not been addressed so far. Because measuring fast and spatially restricted Cl(-) changes within dendrites is not yet technically possible, we used computational approaches to predict the effects of spines on Cl(-) dynamics in morphologically complex dendrites. In all morphologies tested, including dendrites imaged by super-resolution STED microscopy in live brain tissue, spines slowed down longitudinal Cl(-) diffusion along dendrites. This effect was robust and could be observed in both deterministic as well as stochastic simulations. Cl(-) extrusion altered Cl(-) diffusion to a much lesser extent than the presence of spines. The spine-dependent slowing of Cl(-) diffusion affected the amount and spatial spread of changes in the GABA reversal potential thereby altering homosynaptic as well as heterosynaptic short-term ionic plasticity at GABAergic synapses in dendrites. Altogether, our results suggest a fundamental role of dendritic spines in shaping Cl(-) diffusion, which could be of relevance in the context of pathological conditions where spine densities and neural excitability are perturbed.


Subject(s)
Chlorides/metabolism , Dendrites/metabolism , Dendritic Spines/physiology , Animals , Brain/physiology , Computational Biology/methods , Humans , Models, Neurological , Synaptic Transmission , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...