Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Curr Res Microb Sci ; 6: 100229, 2024.
Article in English | MEDLINE | ID: mdl-38525307

ABSTRACT

Strigolactones (SLs) are a new class of plant hormones that play a significant role in regulating various aspects of plant growth promotion, stress tolerance and influence the rhizospheric microbiome. GR24 is a synthetic SL analog used in scientific research to understand the effects of SL on plants and to act as a plant growth promoter. This study aimed to conduct hormonal seed priming at different concentrations of GR24 (0.1, 0.5, 1.0, 5.0 and 10.0 µM with and without arbuscular mycorrhizal fungi (AMF) inoculation in selected aerobic rice varieties (CR Dhan 201, CR Dhan 204, CR Dhan 205, and CR Dhan 207), Kasalath-IC459373 (P-tolerant check), and IR-36 (P-susceptible check) under phosphorus (P)-deficient conditions to understand the enhancement of growth and priming effects in mycorrhization. Our findings showed that seed priming with 5.0 µM SL GR24 enhanced the performance of mycorrhization in CR Dhan 205 (88.91 %), followed by CR Dhan 204 and 207, and AMF sporulation in CR Dhan 201 (31.98 spores / 10 gm soil) and CR Dhan 207 (30.29 spores / 10 g soil), as well as rice growth. The study showed that the highly responsive variety CR Dhan 207 followed by CR Dhan 204, 205, 201, and Kasalath IC459373 showed higher P uptake than the control, and AMF treated with 5.0 µM SL GR24 varieties CR Dhan 205 followed by CR Dhan 207 and 204 showed the best performance in plant growth, chlorophyll content, and soil functional properties, such as acid and alkaline phosphatase activity, soil microbial biomass carbon (MBC), dehydrogenase activity (DHA), and fluorescein diacetate activity (FDA). Overall, AMF intervention with SL GR24 significantly increased plant growth, soil enzyme activity, and uptake of P compared to the control. Under P-deficient conditions, seed priming with 5.0 µM strigolactone GR24 and AMF inoculum significantly increased selected aerobic rice growth, P uptake, and soil enzyme activities. Application of SLs formulations with AMF inoculum in selected aerobic rice varieties, CR Dhan 207, CR Dhan 204, and CR Dhan 205, will play an important role in mycorrhization, growth, and enhancement of P utilization under P- nutrient deficient conditions.

2.
Life (Basel) ; 13(5)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37240763

ABSTRACT

The prominence of arbuscular mycorrhizal fungi (AMF) in sustainable rice production has long been recognized. However, there is little information about AMF response in aerobic rice cultivation under phosphorus (P)-deficient conditions. The aim of this experiment was to compare and determine the preeminent AMF effects on rice mycorrhizal colonization, responsiveness, P utilization, and different growth-promoting traits under P-deficient conditions. Different AMF genera viz. (Funneliformis sp., Rhizophagus sp., Glomus sp., Acaulospora sp., and Claroideoglomus sp.) in four different aerobic rice varieties developed by ICAR-NRRI, India (CR Dhan 201, CR Dhan 204, CR Dhan 205, and CR Dhan 207) were investigated using the check P-susceptible variety (IR 36) and the P-tolerant variety (Kasalath IC459373). Data analyzed through linear modeling approaches and bivariate associations found that AMF colonization was highly correlated with soil enzymes, particularly fluorescein diacetate (FDA) and plant P uptake. The microbial biomass carbon (MBC) and FDA content were significantly changed among rice varieties treated with AMF compared to uninoculated control. Out of four different rice varieties, CR Dhan 207 inoculated with AMF showed higher plant P uptake compared to other varieties. In all the rice varieties, AMF colonization had higher correlation coefficients with soil enzymes (FDA), MBC, and plant P uptake than uninoculated control. The present study indicates that AMF intervention in aerobic rice cultivation under P-deficient conditions significantly increased plant P uptake, soil enzymes activities and plant growth promotion. Thus, the information gathered from this study will help us to develop a viable AMF package for sustainable aerobic rice cultivation.

3.
Heliyon ; 9(3): e13825, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36873502

ABSTRACT

Plant diseases are still the main problem for the reduction in crop yield and a threat to global food security. Additionally, excessive usage of chemical inputs such as pesticides and fungicides to control plant diseases have created another serious problem for human and environmental health. In view of this, the application of plant growth-promoting rhizobacteria (PGPR) for controlling plant disease incidences has been identified as an eco-friendly approach for coping with the food security issue. In this review, we have identified different ways by which PGPRs are capable of reducing phytopathogenic infestations and enhancing crop yield. PGPR suppresses plant diseases, both directly and indirectly, mediated by microbial metabolites and signaling components. Microbial synthesized anti-pathogenic metabolites such as siderophores, antibiotics, lytic enzymes, hydrogen cyanide, and several others act directly on phytopathogens. The indirect mechanisms of reducing plant disease infestation are caused by the stimulation of plant immune responses known as initiation of systemic resistance (ISR) which is mediated by triggering plant immune responses elicited through pathogen-associated molecular patterns (PAMPs). The ISR triggered in the infected region of the plant leads to the development of systemic acquired resistance (SAR) throughout the plant making the plant resistant to a wide range of pathogens. A number of PGPRs including Pseudomonas and Bacillus genera have proven their ability to stimulate ISR. However, there are still some challenges in the large-scale application and acceptance of PGPR for pest and disease management. Further, we discuss the newly formulated PGPR inoculants possessing both plant growth-promoting activities and plant disease suppression ability for a holistic approach to sustaining plant health and enhancing crop productivity.

4.
Pathogens ; 11(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36558781

ABSTRACT

Mango hopper (Amritodus atkinsoni Lethierry) causes devastations in the early vegetative stage of the mango crop. The classical management of mango hopper is with systemic insecticides but their overuse has caused environmental pollution. Here, we have evaluated the entomopathogenic role of Clonostachys rosea through bioassay and optimized media for its large-scale culturing. The current study reveals the potentiality of C. rosea as entomopathogenic on A. atkinsoni. Initially, morphological and molecular characterization was used to validate local isolates' identity as C. rosea. Further, we have evaluated the entomopathogenic role of C. rosea through a bioassay, where the highest mean mortality in A. atkinsoni was observed at a treatment concentration of 3 × 108 conidia/mL, with 96.67% mortality after 168 h of infection. This work also provides insight into the laboratory-based media standardization for C. rosea, resulting in oatmeal agar media and broth as the most suitable artificial media, and 20 °C temperature for its mass culture. Thus, C. rosea is a novo-entomopathogenic fungus on A. atkinsoni and has a high potency to be included in the management of mango hopper pests.

5.
Infect Genet Evol ; 95: 105083, 2021 11.
Article in English | MEDLINE | ID: mdl-34536578

ABSTRACT

Vibrio parahaemolyticus is a gram-negative halophilic bacterium responsible for gastrointestinal infection in human and vibriosis in aquatic animals. The thermostable direct hemolysin (tdh), tdh-related hemolysin (trh) and thermolabile hemolysin (tlh) positive strains of V. parahaemolyticus were identified from brackishwater aquaculture farms of West Bengal and Andhra Pradesh, India. Moreover, the presence of other virulent genes like vcrD1, vopD, vp1680 under type three secretion system 1 (T3SS1) and vcrD2 vopD2, vopB2, vopC2 under type three secretion system 2 (T3SS2) were detected in tdh positive strain of V. parahaemolyticus. Furthermore, the study revealed that the tdh and trh positive isolates were resistant to ß-lactam antibiotics and were able to lyse more than 95% of human Red Blood Cells (RBCs). In addition, both the isolates showed high cytotoxicity in Human Embryonic Kidney (HEK) cell line compared to tlh positive strain. Additionally, intraperitoneal and oral administration of tdh and trh positive strain of V. parahaemolyticus in Indian Major Carp, Labeo rohita caused 100% mortality at the level of 2.0 × 108 CFU ml-1 and 1.6 × 108 CFU ml-1, respectively. In contrast, only 10% mortality was observed in the case of tlh positive strain at the level of 2.5× 108 CFU ml-1. The histopathological changes like infiltration of blood cells and degenerated hepatic tissue in the liver of L. rohita were observed after the experimental challenge. The changes like degeneration of glomeruli, necrosis of renal tubules and Bowman's capsule were observed in the kidney section. Ragged, irregular shaped villi and necrosis of the villus were observed in the intestinal lumen. Overall, the study demonstrates that isolated V. parahaemolyticus is a potent aquatic microbial pathogen. Additionally, as V. parahaemolyticus is also a human pathogen and might pose a threat to the human population, proper management strategies are required to prevent the possible occurrence of disease.


Subject(s)
Bacterial Proteins/genetics , Vibrio parahaemolyticus/physiology , Virulence Factors/genetics , Animals , Penaeidae , Vibrio parahaemolyticus/pathogenicity , Virulence/genetics
6.
Toxicol In Vitro ; 57: 81-95, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30790621

ABSTRACT

Silver nanoparticles are explored for many advanced biological applications including the development of antimicrobial surfaces on implants, SERS imaging, nanotherapeutics, biosensing and much more. However, recent research findings suggest silver nanoparticles provide blockade of differentiation of mesenchymal stem cells (MSCs), especially into osteogenic developmental pathway via generation of reactive oxygen species. These studies suggest that the application of silver nanoparticles in medical implants should be prohibited. In the current study, carbon nanodots (CND) supported silver clusters (AgC) is explored as a remedy to this problem. The nanostructure was synthesized in microwave irradiation induced rapid method and characterization was conducted via UV-Vis spectroscopy, fluorescence spectroscopy, HRTEM, XRD, FTIR, Raman spectroscopy, DLS, AFM, and XPS. Fluorescence spectrum showed a quantum yield of 0.25 while Raman spectroscopy showed rapid amplification of CND specific peaks implicating significant SERS property. Further in vitro biocompatibility (MTT) and bio-imaging capability was assessed culturing Wharton's Jelly-derived MSCs. In this study, its efficacy as in-situ cellular oxidative stress scavenger is also studied using NBT and DCFH-DA assay. Via ALP assay, alizarin red staining, cell membrane nanoindentation studies, PCR analysis and immunocytochemistry for osteoblast-like gene expression it was confirmed that AgCs can control silver nanoparticle-induced inhibition of osteogenic differentiation in vitro. Thus, AgCs (Carbon nanodots supported silver clusters) are not only considered to be a dual-mode bio-imaging nanoprobe but also a remedy to the silver-induced ROS generation and osteogenic differentiation blockade of MSCs.


Subject(s)
Anti-Bacterial Agents/toxicity , Carbon/administration & dosage , Mesenchymal Stem Cells/drug effects , Nanostructures/administration & dosage , Nanostructures/toxicity , Protective Agents/administration & dosage , Silver/toxicity , Cell Differentiation/drug effects , Cells, Cultured , Escherichia coli/drug effects , Escherichia coli/growth & development , Hemolysis/drug effects , Osteogenesis , Reactive Oxygen Species/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
7.
J Biosci Bioeng ; 117(2): 170-177, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23994224

ABSTRACT

Production and optimization of ß-N-acetyl glucosaminidase and chitinase by Ca-alginate immobilized Aeromonas hydrophila SBK1 was carried out using prawn shell as cost-effective substrate. Beads prepared with 5.0% Na-alginate (containing 2.0% colloidal chitin) and 1.0 M CaCl2 showed considerable beads integrity and supported maximum production of chitinolytic enzymes. Bead diameter, 3 mm; temperature, 35°C; pH 7.0; agitation, 90 rpm were found ideal for the maximum production of the enzymes. The fermentation and thermodynamic indices revealed the feasibility of immobilized cells over free cells for enzymes production. Reasonable amount of chitosaccharides (degree of polymerization; 1-6) accumulated in the production media which have paramount antioxidant activity. Scale up experiment was successfully carried out in 5 L fermentor. In immobilized state, the chitosaccharides yield and antioxidant activity increased about 44.76% and 22.22%, whereas specific productivity of ß-N-acetyl glucosaminidase and chitinase increased by 22.86% and 33.37% over free state. The cell entrapped beads can be reused upto ten cycles without marked loss of its biocatalytic efficiency. High level of protoplast of Aspergillus niger was generated by treating mycelia with 10 U/ml of crude chitinase after 4 h at pH 7.0 and in the temperature 35-40°C, and 67% of the protoplasts were found to be regenerated.


Subject(s)
Aeromonas hydrophila/metabolism , Animal Shells/metabolism , Aspergillus niger/cytology , Chitinases/biosynthesis , Chitinases/metabolism , Protoplasts/metabolism , Acetylglucosaminidase/biosynthesis , Acetylglucosaminidase/metabolism , Alginates/metabolism , Alginates/pharmacology , Animal Shells/chemistry , Animals , Bioreactors , Calcium Chloride/metabolism , Calcium Chloride/pharmacology , Cells, Immobilized/metabolism , Chitin/metabolism , Fermentation , Glucuronic Acid/metabolism , Glucuronic Acid/pharmacology , Hexuronic Acids/metabolism , Hexuronic Acids/pharmacology , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Particle Size , Penaeidae , Temperature
8.
J Basic Microbiol ; 54 Suppl 1: S142-51, 2014 Jul.
Article in English | MEDLINE | ID: mdl-23832828

ABSTRACT

An endoglucanase from Aspergillus fumigatus ABK9 was purified from the culture extract of solid-state fermentation and its some characteristics were evaluated. The molecular weight of the purified enzyme (56.3 kDa) was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, zymogram analysis and confirmed by MALDI-TOF mass spectrometry. The enzyme was active optimally at 50 °C, pH 5.0 and stable over a broad range of pH (4.0-7.0) and NaCl concentration of 0-3.0 M. The pKa1 and pKa2 of the ionizable groups of the active sites were 2.94 and 6.53, respectively. The apparent Km , Vmax , and Kcat values for carboxymethyl cellulose were 6.7 mg ml(-1), 775.4 µmol min(-1) , and 42.84 × 10(4) s(-1), respectively. Thermostability of the enzyme was evidenced by the high activation energy (91.45 kJ mol(-1)), large enthalpy for activation of denaturation (88.77 kJ mol(-1)), longer half-life (T1/2) (433 min at 50 °C), higher melting temperature (Tm ) (73.5 °C), and Q10 (1.3) values. All the characteristics favors its suitability as halotolerant and thermostable enzyme during bioprocessing of lignocellulosic materials.


Subject(s)
Aspergillus fumigatus/enzymology , Cellulase/chemistry , Cellulase/metabolism , Carboxymethylcellulose Sodium/metabolism , Cellulase/isolation & purification , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Hydrogen-Ion Concentration , Kinetics , Molecular Weight , Sodium Chloride/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Temperature
9.
J Hazard Mater ; 265: 47-60, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24333714

ABSTRACT

In the present investigation, a number of experiments have been conducted to isolate microbial strains from Taptapani Hot Spring Odisha, India for bioremediation of cadmium and lead. The strains Stenotrophomonas maltophilia (SS1), Aeromonas veronii (SS2) and Bacillus barbaricus (SS3) have shown better adaptation to metal tolerance test, with different concentrations of cadmium and lead and hence have been selected for further studies of metal microbial interaction and optimization. The results of bioremediation process indicate that consortium of thermophilic isolates adsorbed heavy metals more effectively than the individually treated isolates. Therefore, A 24 full factorial central composite design has been employed to analyze the effect of metal ion concentration, microbial concentration and time on removal of heavy metals with consortium. Analysis of variance (ANOVA) shows a high coefficient of determination value. The kinetic data have been fitted to pseudo-first order and second-order models. The isotherm equilibrium data have been well fitted by the Langmuir and Freundlich models. The optimum removal conditions determined for initial ion concentration was 0.3g/l; contact time 72h; microbial concentration, 3ml/l; and pH 7. At optimum adsorption conditions, the adsorption of cadmium and lead are found to be 92% and 93%, respectively, and presence of metals was confirmed through EDS analysis.


Subject(s)
Bacteria/chemistry , Cadmium/chemistry , Hot Springs/microbiology , Lead/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Biodegradation, Environmental , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , India , Models, Theoretical , Wastewater , Water Microbiology
10.
J Biomed Nanotechnol ; 9(5): 870-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23802418

ABSTRACT

Most polymeric nanofibers used for bone tissue engineering lack adequate functional groups for bioactivity. This study explores the potential of nanofibers of phosphate functionalized derivative of chitosan-N-methylene phosphonic chitosan (NMPC) for bone tissue engineering. Nanofibers were fabricated by electrospinning of NMPC/PVA blend solutions. NMPC/PVA nanofibers exhibited 172% higher viability of MG-63 cells compared to pure PVA nanofibers. ALP and Collagen type I genes revealed higher expression in NMPC nanofibers on day 3 whereas osteocalcin gene was expressed on day 7. In rabbit tibial defects, NMPC based electrospun graft showed presence of no adverse tissue reaction by histological examination while radiological examination suggested acceleration of bone healing by 300% compared to defects without any scaffold. Thus it is concluded NMPC based nanofibers may have potential for bone grafting applications.


Subject(s)
Alkaline Phosphatase/genetics , Bone Regeneration/drug effects , Chitosan/analogs & derivatives , Nanofibers , Osteocalcin/genetics , Alkaline Phosphatase/metabolism , Animals , Bone Regeneration/physiology , Cells, Cultured , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/therapeutic use , Drug Evaluation, Preclinical , Gene Expression/drug effects , Gene Expression Profiling , Humans , Male , Materials Testing , Nanofibers/chemistry , Nanofibers/therapeutic use , Osteocalcin/metabolism , Rabbits
11.
Braz. j. microbiol ; 43(3): 1080-1083, July-Sept. 2012. ilus, tab
Article in English | LILACS | ID: lil-656677

ABSTRACT

Use of natural tannin in the screening of tannase producing microbes is really promising. The present work describes about the possibility and integrity of the newly formulated method over the previously reported methods. Tannin isolated from Terminalia belerica Roxb. (Bahera) was used to differentiate between tanninolytic and nontanninolytic microbes. The method is simple, sensitive and superior for the rapid screening and isolation of tannase-producing microbes.


Subject(s)
Plant Structures/enzymology , Fermentation , Tanacetum parthenium/enzymology , Hydrolyzable Tannins/analysis , Hydrolyzable Tannins/isolation & purification , Enzyme Activation , Hydrolysis , Methods
12.
Braz. j. microbiol ; 43(3): 1103-1111, July-Sept. 2012. ilus, graf, tab
Article in English | LILACS | ID: lil-656680

ABSTRACT

In the current study, one thermostable endoglucanase was purified from Penicillium notatum NCIM NO-923 through mixed solid state fermentation of waste cabbage and bagasse. The molecular weight of the purified enzyme was 55kDa as determined by SDS polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme had low activation energy (Ea) of 36.39KJ mol-1 for carboxymethyl cellulose hydrolysis and the enthalpy and entropy for irreversible inactivation was 87 kJ mol −1 and 59.3 J mol −1 K−1 respectively. The enzyme was quite thermostable with a Tm value of 62.2˚C. The pKa1 and pKa2 of ionizable groups of the active sites were 2.5 and 5.3 respectively. Apparent Km, Vmax and Kcat of the enzyme were found to be 5.2 mg mL-1, 80 U/gds and 322.4 sec-1 respectively. The enzyme showed about 1.4 fold increased activity in presence of 10mM MgSO4. Adsorption of endoglucanase on Avicel at wide pH range was studied at different temperatures. Langmuir type adsorption isotherm at 10˚C showed maximum adsorption strength of enzyme at pH 3.0, which was in a range of optimum pH of the enzyme.


Subject(s)
Humans , Brassica , Cellulase/analysis , Entropy , Enzyme Activation , Fermentation , Isotherm , Penicillium chrysogenum/isolation & purification , Electrophoresis, Disc , Food Samples , Hydrolysis , Industrial Microbiology
13.
Appl Biochem Biotechnol ; 167(5): 1254-69, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22270550

ABSTRACT

Tannase production by newly isolated Penicillium purpurogenum PAF6 was investigated by 'one variable at a time' (OVAT) approach followed by response surface methodology (RSM). Tannin-rich plant residues were used as supporting solid substrate and sole carbon source and, among them, tamarind seed was found to be the most favorable substrate than haritaki, pomegranate, tea leaf waste and arjun fruit. Physicochemical parameters were initially optimized using OVAT methodology and some important factors like incubation time, incubation temperature, substrate:moisture ratio as well as carbon, nitrogen and phosphate concentrations were verified with Box-Behken design of response surface methodology. Phosphate source, nitrogen source and temperature were found as the most favorable variables in the maximization of production. Tannase production was enhanced from 1.536 U/g to 5.784 U/g using tamarind seed OVAT optimization and further enhancement up to 6.15 U/g following RSM. An overall 3.76- and 4.0-fold increases in tannase production were achieved in OVAT and RSM, respectively.


Subject(s)
Carboxylic Ester Hydrolases/biosynthesis , Fermentation , Models, Statistical , Penicillium/metabolism , Plant Extracts/metabolism , Tannins/metabolism , Extracellular Space/metabolism , Penicillium/cytology , Penicillium/isolation & purification , Software
14.
Braz J Microbiol ; 43(3): 1080-3, 2012 Jul.
Article in English | MEDLINE | ID: mdl-24031931

ABSTRACT

Use of natural tannin in the screening of tannase producing microbes is really promising. The present work describes about the possibility and integrity of the newly formulated method over the previously reported methods. Tannin isolated from Terminalia belerica Roxb. (Bahera) was used to differentiate between tanninolytic and nontanninolytic microbes. The method is simple, sensitive and superior for the rapid screening and isolation of tannase-producing microbes.

15.
Braz J Microbiol ; 43(3): 1103-11, 2012 Jul.
Article in English | MEDLINE | ID: mdl-24031934

ABSTRACT

In the current study, one thermostable endoglucanase was purified from Penicillium notatum NCIM NO-923 through mixed solid state fermentation of waste cabbage and bagasse. The molecular weight of the purified enzyme was 55kDa as determined by SDS polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme had low activation energy (Ea) of 36.39KJ mol(-1) for carboxymethyl cellulose hydrolysis and the enthalpy and entropy for irreversible inactivation was 87 kJ mol (-1) and 59.3 J mol (-1) K(-1) respectively. The enzyme was quite thermostable with a Tm value of 62.2°C. The pKa1 and pKa2 of ionizable groups of the active sites were 2.5 and 5.3 respectively. Apparent Km, Vmax and Kcat of the enzyme were found to be 5.2 mg mL(-1), 80 U/gds and 322.4 sec(-1) respectively. The enzyme showed about 1.4 fold increased activity in presence of 10mM MgSO4. Adsorption of endoglucanase on Avicel at wide pH range was studied at different temperatures. Langmuir type adsorption isotherm at 10°C showed maximum adsorption strength of enzyme at pH 3.0, which was in a range of optimum pH of the enzyme.

SELECTION OF CITATIONS
SEARCH DETAIL
...