Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 6683, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509116

ABSTRACT

Nanofibers and mat-like polyacrylonitrile-polyphenyl/titanium oxide (PAN-Pph./TiO2) with proper electrochemical properties were fabricated via a single-step electrospinning technique for supercapacitor application. Scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), thermogravimetry (TGA), fourier transform infrared (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) were conducted to characterize the morphological and chemical composition of all fabricated nanofibers. Furthermore, the electrochemical activity of the fabricated nanofibers for energy storage applications (supercapacitor) was probed by cyclic voltammetry (CV), charge-discharge (CD), and electrochemical impedance spectroscopy (EIS). The PAN-PPh./TiO2 nanofiber electrode revealed a proper specific capacitance of 484 F g-1 at a current density of 11.0 A g-1 compared with PAN (198 F g-1), and PAN-PPh. (352 F g-1) nanofibers using the charge-discharge technique. Furthermore, the PAN-PPh./TiO2 nanofiber electrode displayed a proper energy density of 16.8 Wh kg-1 at a power density (P) of 2749.1 Wkg-1. Moreover, the PAN-PPh./TiO2 nanofiber electrode has a low electrical resistance of 23.72 Ω, and outstanding cycling stability of 79.38% capacitance retention after 3000 cycles.

2.
Sci Rep ; 14(1): 4601, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409208

ABSTRACT

A novel hybrid ternary metallic electrocatalyst of amorphous Mo/Co oxides and crystallized Cu metal was deposited over Ni foam using a one-pot, simple, and scalable solvothermal technique. The chemical structure of the prepared ternary electrocatalyst was systematically characterized and confirmed via XRD, FTIR, EDS, and XPS analysis techniques. FESEM images of (Mo/Co)Ox-Cu@NF display the formation of 3D hierarchical structure with a particle size range of 3-5 µm. The developed (Mo/Co)Ox-Cu@NF ternary electrocatalyst exhibits the maximum activity with 188 mV and 410 mV overpotentials at 50 mA cm-2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Electrochemical impedance spectroscopy (EIS) results for the (Mo/Co)Ox-Cu@NF sample demonstrate the minimum charge transfer resistance (Rct) and maximum constant phase element (CPE) values. A two-electrode cell based on the ternary electrocatalyst just needs a voltage of about 1.86 V at 50 mA cm-2 for overall water splitting (OWS). The electrocatalyst shows satisfactory durability during the OWS for 24 h at 10 mA cm-2 with an increase of only 33 mV in the cell potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...