Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Heliyon ; 10(1): e23847, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38332888

ABSTRACT

The mineral composition, crystallinity, and dielectric properties of salts can provide valuable insights into the quality and suitability of different types of salt for various applications. In this study, comprehensive analysis of the X-Ray Diffraction (XRD), X-ray fluorescence (XRF) and dielectric analysis of the Ba'kelalan salt, Himalaya salt and Bamboo salt have been investigated. The mineral composition of these salts, encompassing vital elements such as iodine and other trace minerals, significantly influences the salt's nutritional profile and overall excellence. Nonetheless, gauging the dispersion and density of these minerals poses difficulties due to conventional techniques that can be arduous, damaging, and expensive. Sample preparation is carried out before conducting X-ray diffraction (XRD), X-ray fluorescence (XRF), and dielectric analysis. XRD measurements are performed using the Bruker D2 Phaser to identify crystalline material phases. XRD operates on the principle of constructive X-ray interference within crystalline samples. For elemental analysis across a broad spectrum of materials, XRF is employed. Elemental peaks are scanned, starting from the lowest to the highest angle of incidence. The X-ray intensity at characteristic peaks is compared to the standard series. Dielectric spectroscopy analysis examines the dielectric behaviour of Ba'kelalan salt, Himalaya salt, and Bamboo salt. The setup involves a vector network analyser (VNA) paired with an open-ended coaxial probe, utilizing the microwave method. This approach ensures rapid, efficient, and non-destructive measurements of dielectric constants (ε') and loss factors (ε"). The dielectric permittivity spectra are acquired within the frequency range of 4 GHz-20 GHz. ε' of these salts increase with frequency. Meanwhile, ε" seem varies insignificantly over frequency. Mineral contents and crystallinity are the crucial factors lead to these responses. Based on the study, the quality and suitability of the selected salts for specific applications can be determined by considering their mineral composition, crystallinity, and dielectric properties in the context of the intended use. This gives an insight for some applications that may benefit from certain minerals or crystalline structures, others may require specific dielectric properties for effective use. Therefore, understanding these properties allows for decision-making in choosing the right type of salt for a given purpose, whether it's for foods, medical, industrial, healthcare, and technological applications.

2.
Polymers (Basel) ; 15(2)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36679201

ABSTRACT

This study aims to investigate the electric responses (complex modulus and complex impedance analysis) of hydroxyapatite/starch bone scaffold as a function of hydroxyapatite/starch proportion and the microstructural features. Hence, the non-porous and porous hydroxyapatite/starch composites were fabricated with various hydroxyapatite/starch proportions (70/30, 60/40, 50/50, 40/60, 30/70, 20/80, and 10/90 wt/wt%). Microstructural analysis of the porous hydroxyapatite/starch composites was carried out by using scanning electron microscopy. It shows that the formation of hierarchical porous microstructures with high porosity is more significant at a high starch proportion. The complex modulus and complex impedance analysis were conducted to investigate the electrical conduction mechanism of the hydroxyapatite/starch composites via dielectric spectroscopy within a frequency range from 5 MHz to 12 GHz. The electrical responses of the hydroxyapatite/starch composites are highly dependent on the frequency, material proportion, and microstructures. High starch proportion and highly porous hierarchical microstructures enhance the electrical responses of the hydroxyapatite/starch composite. The material proportion and microstructure features of the hydroxyapatite/starch composites can be indirectly reflected by the simulated electrical parameters of the equivalent electrical circuit models.

3.
Polymers (Basel) ; 15(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36679235

ABSTRACT

Mechanistic studies of the interaction of electromagnetic (EM) fields with biomaterials has motivated a growing need for accurate models to describe the EM behavior of biomaterials exposed to these fields. In this paper, biodegradable bone scaffolds were fabricated using Wangi rice starch and nano-hydroxyapatite (nHA). The effects of porosity and composition on the fabricated scaffold were discussed via electrical impedance spectroscopy analysis. The fabricated scaffold was subjected to an electromagnetic field within the X-band and Ku-band (microwave spectrum) during impedance/dielectric measurement. The impedance spectra were analyzed with lumped-element models. The impedance spectra of the scaffold can be embodied in equivalent circuit models composed of passive components of the circuit, i.e., resistors, inductors and capacitors. It represents the morphological, structural and chemical characteristics of the bone scaffold. The developed models describe the impedance characteristics of plant tissue. In this study, it was found that the ε' and ε″ of scaffold composites exhibited up and down trends over frequencies for both X-band and Ku-band. The circuit models presented the lowest mean percentage errors of Z' and Z″, i.e., 3.60% and 13.80%, respectively.

4.
Int J Mol Sci ; 23(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35628505

ABSTRACT

This paper aims to investigate the dielectric properties, i.e., dielectric constant (ε'), dielectric loss factor (ε″), dielectric tangent loss (tan δ), electrical conductivity (σ), and penetration depth (Dp), of the porous nanohydroxyapatite/starch composites in the function of starch proportion, pore size, and porosity over a broad band frequency range of 5 MHz−12 GHz. The porous nanohydroxyapatite/starch composites were fabricated using different starch proportions ranging from 30 to 90 wt%. The results reveal that the dielectric properties and the microstructural features of the porous nanohydroxyapatite/starch composites can be enhanced by the increment in the starch proportion. Nevertheless, the composite with 80 wt% of starch proportion exhibit low dielectric properties (ε', ε″, tan δ, and σ) and a high penetration depth because of its highly interconnected porous microstructures. The dielectric properties of the porous nanohydroxyapatite/starch composites are highly dependent on starch proportion, average pore size, and porosity. The regression models are developed to express the dielectric properties of the porous nanohydroxyapatite/starch composites (R2 > 0.96) in the function of starch proportion, pore size, and porosity from 1 to 11 GHz. This dielectric study can facilitate the assessment of bone scaffold design in bone tissue engineering applications.


Subject(s)
Starch , Porosity , Regression Analysis , Starch/chemistry , Tissue Engineering/methods
5.
Materials (Basel) ; 14(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919814

ABSTRACT

Hydroxyapatite (HA) has been widely used as a scaffold in tissue engineering. HA possesses high mechanical stress and exhibits particularly excellent biocompatibility owing to its similarity to natural bone. Nonetheless, this ceramic scaffold has limited applications due to its apparent brittleness. Therefore, this had presented some difficulties when shaping implants out of HA and for sustaining a high mechanical load. Fortunately, these drawbacks can be improved by combining HA with other biomaterials. Starch was heavily considered for biomedical device applications in favor of its low cost, wide availability, and biocompatibility properties that complement HA. This review provides an insight into starch/HA composites used in the fabrication of bone tissue scaffolds and numerous factors that influence the scaffold properties. Moreover, an alternative characterization of scaffolds via dielectric and free space measurement as a potential contactless and nondestructive measurement method is also highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL
...