Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
PeerJ Comput Sci ; 9: e1483, 2023.
Article in English | MEDLINE | ID: mdl-37547408

ABSTRACT

Anterior cruciate ligament (ACL) tears are a common knee injury that can have serious consequences and require medical intervention. Magnetic resonance imaging (MRI) is the preferred method for ACL tear diagnosis. However, manual segmentation of the ACL in MRI images is prone to human error and can be time-consuming. This study presents a new approach that uses deep learning technique for localizing the ACL tear region in MRI images. The proposed multi-scale guided attention-based context aggregation (MGACA) method applies attention mechanisms at different scales within the DeepLabv3+ architecture to aggregate context information and achieve enhanced localization results. The model was trained and evaluated on a dataset of 917 knee MRI images, resulting in 15265 slices, obtaining state-of-the-art results with accuracy scores of 98.63%, intersection over union (IOU) scores of 95.39%, Dice coefficient scores (DCS) of 97.64%, recall scores of 97.5%, precision scores of 98.21%, and F1 Scores of 97.86% on validation set data. Moreover, our method performed well in terms of loss values, with binary cross entropy combined with Dice loss (BCE_Dice_loss) and Dice_loss values of 0.0564 and 0.0236, respectively, on the validation set. The findings suggest that MGACA provides an accurate and efficient solution for automating the localization of ACL in knee MRI images, surpassing other state-of-the-art models in terms of accuracy and loss values. However, in order to improve robustness of the approach and assess its performance on larger data sets, further research is needed.

2.
Plants (Basel) ; 12(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37111827

ABSTRACT

The current methods of classifying plant disease images are mainly affected by the training phase and the characteristics of the target dataset. Collecting plant samples during different leaf life cycle infection stages is time-consuming. However, these samples may have multiple symptoms that share the same features but with different densities. The manual labelling of such samples demands exhaustive labour work that may contain errors and corrupt the training phase. Furthermore, the labelling and the annotation consider the dominant disease and neglect the minor disease, leading to misclassification. This paper proposes a fully automated leaf disease diagnosis framework that extracts the region of interest based on a modified colour process, according to which syndrome is self-clustered using an extended Gaussian kernel density estimation and the probability of the nearest shared neighbourhood. Each group of symptoms is presented to the classifier independently. The objective is to cluster symptoms using a nonparametric method, decrease the classification error, and reduce the need for a large-scale dataset to train the classifier. To evaluate the efficiency of the proposed framework, coffee leaf datasets were selected to assess the framework performance due to a wide variety of feature demonstrations at different levels of infections. Several kernels with their appropriate bandwidth selector were compared. The best probabilities were achieved by the proposed extended Gaussian kernel, which connects the neighbouring lesions in one symptom cluster, where there is no need for any influencing set that guides toward the correct cluster. Clusters are presented with an equal priority to a ResNet50 classifier, so misclassification is reduced with an accuracy of up to 98%.

3.
Diagnostics (Basel) ; 13(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36673006

ABSTRACT

Recent advancements in artificial intelligence (AI) have led to numerous medical discoveries. The field of computer vision (CV) for medical diagnosis has received particular attention. Using images of peripheral blood (PB) smears, CV has been utilized in hematology to detect acute leukemia (AL). Significant research has been undertaken in the area of AL diagnosis automation in order to deliver an accurate diagnosis. This study addresses the morphological classification of atypical white blood cells (WBCs), including immature WBCs and atypical lymphocytes, in acute myeloid leukemia (AML), as observed in peripheral blood (PB) smear images. The purpose of this work is to build a classification model for atypical AML WBCs based on their distinctive features. Using a hybrid model based on geometric transformation (GT) and a deep convolutional autoencoder (DCAE), this work provides a novel technique in the field of AI for resolving the issue of imbalanced distribution of WBCs in blood samples, nicknamed the "GT-DCAE WBC augmentation model". In addition, to extract context-free atypical WBC features, this study develops a stable learning paradigm by incorporating WBC segmentation into deep learning. In order to classify atypical WBCs into eight distinct subgroups, a hybrid multiclassification model termed the "two-stage DCAE-CNN atypical WBC classification model" (DCAE-CNN) was developed. The model achieved an average accuracy of 97%, a sensitivity of 97%, and a precision of 98%. Overall and by class, the model's discriminating abilities were exceptional, with an AUC of 99.7% and a class-wise range of 80% to 100%.

4.
Diagnostics (Basel) ; 12(12)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36553177

ABSTRACT

COVID-19 was first discovered in December 2019 in Wuhan. There have been reports of thousands of illnesses and hundreds of deaths in almost every region of the world. Medical images, when combined with cutting-edge technology such as artificial intelligence, have the potential to improve the efficiency of the public health system and deliver faster and more reliable findings in the detection of COVID-19. The process of developing the COVID-19 diagnostic system begins with image accusation and proceeds via preprocessing, feature extraction, and classification. According to literature review, several attempts to develop taxonomies for COVID-19 detection using image processing methods have been introduced. However, most of these adhere to a standard category that exclusively considers classification methods. Therefore, in this study a new taxonomy for the early stages of COVID-19 detection is proposed. It attempts to offer a full grasp of image processing in COVID-19 while considering all phases required prior to classification. The survey concludes with a discussion of outstanding concerns and future directions.

5.
Contrast Media Mol Imaging ; 2022: 1541980, 2022.
Article in English | MEDLINE | ID: mdl-35919500

ABSTRACT

Modalities like MRI give information about organs and highlight diseases. Organ information is visualized in intensities. The segmentation method plays an important role in the identification of the region of interest (ROI). The ROI can be segmented from the image using clustering, features, and region extraction. Segmentation can be performed in steps; firstly, the region is extracted from the image. Secondly, feature extraction performed, and better features are selected. They can be shape, texture, or intensity. Thirdly, clustering segments the shape of tumor, tumor has specified shape, and shape is detected by feature. Clustering consists of FCM, K-means, FKM, and their hybrid. To support the segmentation, we conducted three studies (region extraction, feature, and clustering) which are discussed in the first line of this review paper. All these studies are targeting MRI as a modality. MRI visualization proved to be more accurate for the identification of diseases compared with other modalities. Information of the modality is compromised due to low pass image. In MRI Images, the tumor intensities are variable in tumor areas as well as in tumor boundaries.


Subject(s)
Brain Neoplasms , Image Processing, Computer-Assisted , Algorithms , Brain Neoplasms/diagnostic imaging , Fuzzy Logic , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods
6.
J Healthc Eng ; 2022: 2550120, 2022.
Article in English | MEDLINE | ID: mdl-35444781

ABSTRACT

In recent times, knee joint pains have become severe enough to make daily tasks difficult. Knee osteoarthritis is a type of arthritis and a leading cause of disability worldwide. The middle of the knee contains a vital portion, the anterior cruciate ligament (ACL). It is necessary to diagnose the ACL ruptured tears early to avoid surgery. The study aimed to perform a comparative analysis of machine learning models to identify the condition of three ACL tears. In contrast to previous studies, this study also considers imbalanced data distributions as machine learning techniques struggle to deal with this problem. The paper applied and analyzed four machine learning classification models, namely, random forest (RF), categorical boosting (Cat Boost), light gradient boosting machines (LGBM), and highly randomized classifier (ETC) on the balanced, structured dataset of ACL. After oversampling a hyperparameter adjustment, the above four models have achieved an average accuracy of 95.72%, 94.98%, 94.98%, and 98.26%. There are 2070 observations and eight features in the collection of three diagnosis ACL classes after oversampling. The area under curve value was approximately 0.998, respectively. Experiments were performed using twelve machine learning algorithms with imbalanced and balanced datasets. However, the accuracy of the imbalanced dataset has remained under 76% for all twelve models. After oversampling, the proposed model may contribute to the investigation of ACL tears on magnetic resonance imaging and other knee ligaments efficiently and automatically without involving radiologists.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament/diagnostic imaging , Anterior Cruciate Ligament Injuries/diagnostic imaging , Humans , Knee/diagnostic imaging , Knee Joint/diagnostic imaging , Machine Learning , Magnetic Resonance Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL