Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Complement Ther Med ; 48: 102273, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31987257

ABSTRACT

OBJECTIVE: The beneficial effects of carnitine supplementation on nonalcoholic fatty liver disease are unclear. We conducted a systematic review and meta-analysis to evaluate the effects of carnitine supplementation on liver function, lipid profile, body mass index, body weight, and homeostasis model assessment of insulin resistance in patients with nonalcoholic fatty liver disease. METHODS: A comprehensive search of PubMed, Web of Science, Scopus, Cochrane Library, and Google Scholar databases were performed. Only randomized placebo-controlled human studies that examined the effects of carnitine supplementation on liver function, lipid profile, body mass index, body weight, and homeostasis model assessment of insulin resistance up to September 2019 were included. Fixed effects or random-effects models were applied to compute the pooled effect size. Heterogeneity assessments were performed using Cochran's Q test and I-squared statistics. The quality of the studies was assessed using the Jaded scale. RESULTS: A total of 5 articles were selected, including 334 individuals (167 in control and 167 in intervention groups). The results demonstrated that carnitine supplementation significantly reduced homeostasis model assessment of insulin resistance (HOMA-IR) (WMD: -0.91; 95 % CI: -1.11, -0.72; p < 0.001, I2 = 0.0 %) and the levels of aspartate aminotransferase (AST) (WMD: -16.62; 95 % CI: -28.11, -5.14; IU/l; p = 0.005, I2 = 93.5 %), alanine aminotransferase (ALT) (WMD: -33.39; 95 % CI: -45.13, -21.66; IU/l; p < 0.001, I2 = 93.4 %), and triglycerides (TG) (WMD: -22.13; 95 % CI: -38.91, -5.34; mg/dl; p = 0.01; I2 = 0.0 %). However, the results of the pooled effect size did not show any significant effect of carnitine supplementation on body mass index (BMI) (WMD: 0.07; 95 % CI: -0.15, 0.29; p = 0.55; I2 = 0.0 %), body weight (WMD: -0.28; 95 % CI: -2.23, 1.68; p = 0.78; I2 = 45.7 %), the levels of gamma-glutamyl transferase (γGT) (WMD: -11.31; 95 % CI: -24.35, 1.73; IU/l; p = 0.09, I2 = 61.1 %), cholesterol (WMD: -13.58; 95 % CI: -46.77, 19.60; mg/dl; p = 0.42; I2 = 94.9 %), high-density lipoprotein-cholesterol (HDL-C) (WMD: 1.36; 95 % CI: -0.96, 3.68; mg/dl; p = 0.25; I2 = 64.7 %), and low density lipoprotein-cholesterol (LDL-C) (WMD: -14.85; 95 % CI: -45.43, 15.73; mg/dl; p = 0.34; I2 = 96.4 %). CONCLUSIONS: This analysis shows that carnitine supplementation for patients with nonalcoholic fatty liver disease demonstrates a reduction in AST, ALT, TG levels and HOMA-IR. However, no significant effect of carnitine supplementation was observed on BMI, body weight, the levels of γGT, TC, HDL-cholesterol and LDL-cholesterol.


Subject(s)
Carnitine/administration & dosage , Dietary Supplements , Non-alcoholic Fatty Liver Disease/therapy , Body Mass Index , Body Weight , Humans , Insulin Resistance , Lipids/blood , Randomized Controlled Trials as Topic
2.
Biomed Res Int ; 2018: 9568351, 2018.
Article in English | MEDLINE | ID: mdl-29951550

ABSTRACT

Probiotic Lactobacillus casei Shirota (LcS) is a potential decontaminating agent of aflatoxin B1 (AFB1). However, few studies have investigated the influence of diet, especially a high protein (HP) diet, on the binding of AFB1 by probiotics. This research was conducted to determine the effect of HP diet on the ability of LcS to bind AFB1 and reduce aflatoxin M1 (AFM1) in AFB1-induced rats. Sprague Dawley rats were randomly divided into three groups: A (HP only), B (HP + 108 CFU LcS + 25 µg AFB1/kg BW), and C (HP + 25 µg AFB1/kg BW). Levels of AST and ALP were higher in all groups but other liver function's biomarkers were in the normal range, and the liver's histology showed no structural changes. The urea level of rats in group B (10.02 ± 0.73 mmol/l) was significantly lower (p < 0.05) than that of rats in group A (10.82 ± 0.26 mmol/l). The presence of carcinoma in the small intestine and colon was more obvious in group C than in group B. Moreover, rats in group B had significantly (p < 0.05) lower AFM1 concentration (0.39 ± 0.01 ng/ml) than rats in group C (5.22 ± 0.28 ng/ml). Through these findings, LcS supplementation with HP diet alleviated the adverse effects of AFB1 by preventing AFB1 absorption in the small intestine and reducing urinary AFM1.


Subject(s)
Aflatoxin M1/metabolism , Diet, High-Protein , Probiotics , Animals , Lacticaseibacillus casei , Male , Rats , Rats, Sprague-Dawley
3.
Int J Hyg Environ Health ; 217(4-5): 443-51, 2014.
Article in English | MEDLINE | ID: mdl-24095591

ABSTRACT

Aflatoxin is ubiquitously found in many foodstuffs and produced by Aspergillus species of fungi. Of many aflatoxin metabolites, AFB1 is classified by the International Agency for Research on Cancer (IARC) as group one carcinogen and linked to the development of hepatocellular carcinoma (HCC). The study on molecular biomarker of aflatoxin provides a better assessment on the extent of human exposure to aflatoxin. In Malaysia, the occurrences of aflatoxin-contaminated foods have been documented, but there is a lack of data on human exposure to aflatoxin. Hence, this study investigated the occurrence of AFB1-lysine adduct in serum samples and its association with liver and kidney functions. 5ml fasting blood samples were collected from seventy-one subjects (n=71) for the measurement of AFB1-lysine adduct, albumin, total bilirubin, AST (aspartate aminotransferase), ALT (alanine transaminase), ALP (alkaline phosphatase), GGT (gamma-glutamyl transpeptidase), creatinine and BUN (blood urea nitrogen). The AFB1-lysine adduct was detected in all serum samples (100% detection rate) with a mean of 6.85±3.20pg/mg albumin (range: 1.13-18.85pg/mg albumin). Male subjects (mean: 8.03±3.41pg/mg albumin) had significantly higher adduct levels than female subjects (mean: 5.64±2.46pg/mg albumin) (p<0.01). It was noteworthy that subjects with adduct levels greater than average (>6.85pg/mg albumin) had significantly elevated level of total bilirubin (p<0.01), GGT (p<0.05) and creatinine (p<0.01). Nevertheless, only the level of total bilirubin, (r=0.347, p-value=0.003) and creatinine (r=0.318, p-value=0.007) showed significant and positive correlation with the level of AFB1-lysine adduct. This study provides a valuable insight on human exposure to aflatoxin in Malaysia. Given that aflatoxin can pose serious problem to the health, intervention strategies should be implemented to limit/reduce human exposure to aflatoxin. Besides, a study with a big sample size should be warranted in order to assess aflatoxin exposure in the general population of Malaysia.


Subject(s)
Environmental Exposure , Food Contamination , Kidney/drug effects , Liver/drug effects , Mycotoxins/blood , Adult , Biomarkers/blood , Female , Humans , Kidney Function Tests , Liver Function Tests , Malaysia , Male , Middle Aged , Mycotoxins/metabolism
4.
J Appl Microbiol ; 114(5): 1507-15, 2013 May.
Article in English | MEDLINE | ID: mdl-23351087

ABSTRACT

AIMS: Aflatoxin B1 (AFB1 ) is considered as the most toxic food contaminant, and microorganisms, especially bacteria, have been studied for their potential to reduce the bioavailability of mycotoxins including aflatoxins. Therefore, this research investigated the efficacy of oral administration of Lactobacillus casei Shirota (LcS) in aflatoxin-induced rats. METHODS AND RESULTS: Sprague Dawley rats were divided into three groups of untreated control, the group induced with AFB1 only, and the group given probiotic in addition to AFB1. In the group induced with AFB1 only, food intake and body weight were reduced significantly. The liver and kidney enzymes were significantly enhanced in both groups induced with AFB1 , but they were lower in the group given LcS. AFB1 was detected from all serum samples except for untreated control group's samples. Blood serum level of AFB1 in the group induced with AFB1 only was significantly higher than the group which received probiotic as a treatment (P < 0·05), and there was no significant difference between the control group and the group treated with probiotic. CONCLUSIONS: LcS supplementation could improve the adverse effect of AFB1 induction on rats' body weight, plasma biochemical parameters and also could reduce the level of AFB1 in blood serum. SIGNIFICANCE AND IMPACT OF THE STUDY: This study's outcomes contribute to better understanding of the potential of probiotic to reduce the bioavailability ofAFB1 . Moreover, it can open an opportunity for future investigations to study the efficacy of oral supplementation of probiotic LcS in reducing aflatoxin level in human.


Subject(s)
Aflatoxin B1/blood , Lacticaseibacillus casei/metabolism , Mycotoxicosis/therapy , Probiotics , Administration, Oral , Animals , Kidney/enzymology , Liver/enzymology , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...