Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
ACS Omega ; 7(47): 42809-42818, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36467908

ABSTRACT

A Schiff base bearing two methyl substituents, namely, 6,6'-((1E,1'E)-((2,2-dimethylpropane-1,3-diyl) bis(azanylylidene)) bis(methanylylidene)) bis(2-methylphenol) [H2AD1Me] was synthesized and characterized through physicochemical and spectroscopic analyses. Then, the Schiff base was complexed with Pd(II) and Ni(II) to form [Pd(AD1Me)] and [Ni(AD1Me)], respectively. Both metal complexes were successfully obtained and characterized through several analyses, viz., melting point, elemental analysis, molar conductivity, magnetic susceptibility, FTIR, 1H NMR, UV-vis, and single crystal X-ray diffraction. A quantitative analysis of the intermolecular interactions in the crystal structures has been performed using Hirshfeld surface analysis. Both metal complexes were crystallized in a monoclinic crystal system with the space group of P21/c. Additionally, the deprotonated phenolic oxygen atom (O1/O2) and azomethine nitrogen atom (N1/N2) of the ligand chelate the Pd(II) and Ni(II) ions, forming a slightly distorted square-planar complex containing three six-membered rings encircling the metal core with dsp2 hybridization. The shift of ν(C=N) to a higher frequency in FTIR by 26-28 cm-1 indicated that the complexation to Pd(II) and Ni(II) through the azomethine N was established. It was further supported through the shifting of the azomethine proton signal to higher or lower chemical shifts with Δδ = 0.43-1.15 ppm in 1H NMR. In addition, the shifting of the n-π*(C=N) band in UV-vis spectra with Δλ = 24-40 nm indicated the involvement of azomethine nitrogen in the complexation. All the compounds showed no significant antibacterial activity against three bacterial strains, namely, Staphylococcus aureus subsp. aureus Rosenbach (ATCC 6538), Streptococcus mutans Clarke (ATCC 700,610), and Proteus vulgaris (ATCC 6380), as the percent growth inhibition calculated was less than 90%.

3.
Ultrason Sonochem ; 79: 105793, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34673338

ABSTRACT

Pandan (Pandanus amaryllifolius) is commonly used as a food ingredient in Southeast Asia due to its delicious flavor, appetizing aroma and bright green colour. Pandan plant is uniquely found only in certain parts of the world. Despite its increasing popularity worldwide, its export market is limited by practical issues. One of the main problems for exporting Pandan to global market is its stability during transport. Due to the volatility of its active constituent, the functional properties of Pandan are lost during storage and shipment. In this study, we explored the ability of ultrasound processing technology to encapsulate the aromatic Pandan extract using lysozyme or chitosan as a shell material. 20 kHz ultrasonicator was used to encapsulate the pandan extract at 150 W of applied power. Two parameters, the ultrasonic probe tip and the core-to-shell ratio were varied to control the properties of the encapsulates. The diameters of the probe tip used were 0.3 and 1.0 cm. The core-to-shell volume ratios used were 1:160 and 1:40. The size distribution and the stability of the synthesized microspheres were characterized to understand and explore the possible parameters variation impact. Both size and size distribution of the microspheres were found to be influenced by the parameters varied to certain extent. The results showed that the mean size of the microspheres was generally smallest when using 1 cm probe tip with lower core-to-shell volume ratio but largest when using the 3 mm tip with higher core-to-shell volume ratio. This indicates that the sonication parameters could be fine-tuned to achieve the encapsulation of Pandan extract for storage and export. The pandan-encapsulated microspheres were also found to be stable during storage at least for one month.


Subject(s)
Pandanaceae , Chitosan , Microspheres , Particle Size , Plant Extracts , Sonication , Ultrasonics
4.
RSC Adv ; 11(46): 29080-29101, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-35478537

ABSTRACT

Psoriasis is a lingering inflammatory skin disease that attacks the immune system. The abnormal interactions between T cells, immune cells, and inflammatory cytokines causing the epidermal thickening. International guidelines have recommended topical treatments for mild to moderate psoriasis whilst systemic and phototherapy treatments for moderate to severe psoriasis. However, current therapeutic approaches have a wider extent to treat moderate to severe type of psoriasis especially since the emergence of diverse biologic agents. In the meantime, topical delivery of conventional treatments has prompted many unsatisfactory effects to penetrate through the skin (stratum corneum). By understanding the physiology of stratum corneum barrier functions, scientists have developed different types of lipid-based nanoparticles like solid lipid nanoparticles, nanostructured lipid carriers, nanovesicles, and nanoemulsions. These novel drug delivery systems help the poorly solubilised active pharmaceutical ingredient reaches the targeted site seamlessly because of the bioavailability feature of the nanosized molecules. Lipid-based nanoparticles for psoriasis treatments create a paradigm for topical drug delivery due to their lipids' amphiphilic feature to efficiently encapsulate both lipophilic and hydrophilic drugs. This review highlights different types of lipid-based nanoparticles and their recent works of nano formulated psoriasis treatments. The encapsulation of psoriasis drugs through lipid nanocarriers unfold numerous research opportunities in pharmaceutical applications but also draw challenges for the future development of nano drugs.

5.
Ultrason Sonochem ; 71: 105360, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33125959

ABSTRACT

The ion exchange constant, KXBr (for the case of cetyltrimethylammonium bromide, CTABr, in this study) is a method dependant characterization of ion exchange process by counterions, X and Br with different relative binding ratios. In this report, the ion exchange constant, KXBr values for micelle systems irradiated under 2 min of sonication at 120 W power using a probe sonicator with 1 cm tip were determined to be 85.2, 125.6 and 122.4 when X  = o-, m- and p-chlorobenzoates, respectively. The values were quantified using a semiempirical kinetic method coupled with Pseudophase Micellar model, and later compared to the same system in the absence of sonication. The sonication was found to amplify the KXBr values by ~ 13-fold for X  = o-chlorobenzoate and ~ 2.5-fold for X  = m- and p-chlorobenzoates. This is due to the improvement of ion exchange process by the oscillation of bubbles generated by acoustic cavitation. An active ion exchange process indicates better stabilization of the micelle aggregational structure by the penetration of the introduced counterions, X into the micelle Stern layer leading to the growth of the micelle. This is supported by the remarkable increase in the viscosity of the micelle system by > 7-fold for X  = o-chlorobenzoate and by > 2-folds for X  = m- and p-chlorobenzoates. Sonication was also found to induce maximum viscoelasticity at lower concentration ratio of [CTABr]:[X]. The ability of ultrasound to induce micelle growth and exhibiting viscoelasticity at lower concentration of counterionic additive will be very useful in technologies where viscoelastic solution is desired such as in oil drilling and centralized heating and cooling system.

SELECTION OF CITATIONS
SEARCH DETAIL
...