Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36733262

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) data are typically with a large number of missing values, which often results in the loss of critical gene signaling information and seriously limit the downstream analysis. Deep learning-based imputation methods often can better handle scRNA-seq data than shallow ones, but most of them do not consider the inherent relations between genes, and the expression of a gene is often regulated by other genes. Therefore, it is essential to impute scRNA-seq data by considering the regional gene-to-gene relations. We propose a novel model (named scGGAN) to impute scRNA-seq data that learns the gene-to-gene relations by Graph Convolutional Networks (GCN) and global scRNA-seq data distribution by Generative Adversarial Networks (GAN). scGGAN first leverages single-cell and bulk genomics data to explore inherent relations between genes and builds a more compact gene relation network to jointly capture the homogeneous and heterogeneous information. Then, it constructs a GCN-based GAN model to integrate the scRNA-seq, gene sequencing data and gene relation network for generating scRNA-seq data, and trains the model through adversarial learning. Finally, it utilizes data generated by the trained GCN-based GAN model to impute scRNA-seq data. Experiments on simulated and real scRNA-seq datasets show that scGGAN can effectively identify dropout events, recover the biologically meaningful expressions, determine subcellular states and types, improve the differential expression analysis and temporal dynamics analysis. Ablation experiments confirm that both the gene relation network and gene sequence data help the imputation of scRNA-seq data.


Subject(s)
Single-Cell Gene Expression Analysis , Software , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Genomics , Gene Expression Profiling
2.
J Healthc Eng ; 2022: 6566982, 2022.
Article in English | MEDLINE | ID: mdl-35422980

ABSTRACT

The coronavirus (COVID-19) pandemic has had a terrible impact on human lives globally, with far-reaching consequences for the health and well-being of many people around the world. Statistically, 305.9 million people worldwide tested positive for COVID-19, and 5.48 million people died due to COVID-19 up to 10 January 2022. CT scans can be used as an alternative to time-consuming RT-PCR testing for COVID-19. This research work proposes a segmentation approach to identifying ground glass opacity or ROI in CT images developed by coronavirus, with a modified structure of the Unet model having been used to classify the region of interest at the pixel level. The problem with segmentation is that the GGO often appears indistinguishable from a healthy lung in the initial stages of COVID-19, and so, to cope with this, the increased set of weights in contracting and expanding the Unet path and an improved convolutional module is added in order to establish the connection between the encoder and decoder pipeline. This has a major capacity to segment the GGO in the case of COVID-19, with the proposed model being referred to as "convUnet." The experiment was performed on the Medseg1 dataset, and the addition of a set of weights at each layer of the model and modification in the connected module in Unet led to an improvement in overall segmentation results. The quantitative results obtained using accuracy, recall, precision, dice-coefficient, F1score, and IOU were 93.29%, 93.01%, 93.67%, 92.46%, 93.34%, 86.96%, respectively, which is better than that obtained using Unet and other state-of-the-art models. Therefore, this segmentation approach proved to be more accurate, fast, and reliable in helping doctors to diagnose COVID-19 quickly and efficiently.


Subject(s)
COVID-19 , COVID-19/diagnostic imaging , COVID-19 Testing , Humans , Image Processing, Computer-Assisted/methods , Lung/diagnostic imaging , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...