Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 12(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37762971

ABSTRACT

Grafts from donors after cardiac death (DCD) have greatly contributed to expanding the donor organ pool. This study aimed to determine the benefits of subnormothermic extracorporeal membrane oxygenation (ECMO) and hypothermic machine perfusion (HMP) in a porcine model of DCD liver. Female domestic crossbred Large Yorkshire and Landrace pigs weighing approximately 20 kg were used. The abdominal aorta and inferior vena cava were cannulated and connected to an ECMO circuit for in situ perfusion of the abdominal organs at 22 °C for 60 min, 45 min after cardiac death. The pigs were divided into the cold storage (CS) group (n = 3), where liver grafts were preserved at 4 °C, and the HMP group (n = 3), where liver grafts were preserved by HMP at 8-10 °C. After 4 h of preservation, liver function was evaluated using an isolated liver reperfusion model for 2 h. Although the difference was insignificant, the liver effluent enzyme levels in the HMP group were lower than those in the CS group. Furthermore, morphological findings showed fewer injured hepatocytes in the HMP group than in the CS group. The combined use of in situ subnormothermic ECMO and HMP was beneficial for the functional improvement of DCD liver grafts.

2.
PLoS Negl Trop Dis ; 16(11): e0010947, 2022 11.
Article in English | MEDLINE | ID: mdl-36441814

ABSTRACT

Cryptosporidium spp. are gastrointestinal opportunistic protozoan parasites that infect humans, domestic animals, and wild animals all over the world. Cryptosporidiosis is the second leading infectious diarrheal disease in infants less than 5 years old. Cryptosporidiosis is a common zoonotic disease associated with diarrhea in infants and immunocompromised individuals. Consequently, cryptosporidiosis is considered a serious economic, veterinary, and medical concern. The treatment options for cryptosporidiosis are limited. To address this problem, we screened a natural product library containing 87 compounds of Traditional Chinese Medicines for anti-Cryptosporidium compounds that could serve as novel drug leads and therapeutic targets against C. parvum. To examine the anti-Cryptosporidium activity and half-maximal inhibitory doses (EC50) of these compounds, we performed in vitro assays (Cryptosporidium growth inhibition assay and host cell viability assay) and in vivo experiments in mice. In these assays, the C. parvum HNJ-1 strain was used. Four of the 87 compounds (alisol-A, alisol-B, atropine sulfate, and bufotalin) showed strong anti-Cryptosporidium activity in vitro (EC50 values = 122.9±6.7, 79.58±13.8, 253.5±30.3, and 63.43±18.7 nM, respectively), and minimum host cell cytotoxicity (cell survival > 95%). Furthermore, atropine sulfate (200 mg/kg) and bufotalin (0.1 mg/kg) also showed in vivo inhibitory effects. Our findings demonstrate that atropine sulfate and bufotalin are effective against C. parvum infection both in vitro and in vivo. These compounds may, therefore, represent promising novel anti-Cryptosporidium drug leads for future medications against cryptosporidiosis.


Subject(s)
Cryptosporidium , Medicine, Chinese Traditional , Animals , Child, Preschool , Humans , Mice
3.
World J Gastroenterol ; 28(19): 2100-2111, 2022 May 21.
Article in English | MEDLINE | ID: mdl-35664031

ABSTRACT

BACKGROUND: The machine perfusion (MP) preservation including hypothermic MP (HMP) and midthermic MP (MMP) has been considered as a promising strategy to preserve the functions of liver donated after cardiac death. The importance of understanding liver sinusoidal endothelial cells (LSEC) damage in regulating liver injury during MP has been emphasized. However, the ultrastructural changes in the LSEC and sinusoids around them after MP are unclear. AIM: To investigate the ultrastructural changes in the LSEC and sinusoids around them after MP. METHODS: Porcine liver grafts undergo a warm ischemia time of 60 minutes perfused for 4 h with modified University of Wisconsin gluconate solution. Group A grafts were preserved with HMP at 8 °C constantly for 4 h. Group B grafts were preserved with a rewarming solution at 22 °C by MMP for 4 h. Then the ultrastructural changes in the LSEC and sinusoids in Group A and B were comparatively analyzed by using osmium-maceration scanning electron microscopy with complementary transmission electron microscopy methods. RESULTS: An analysis of the LSEC after warm ischemia revealed that mitochondria with condensed-shaped cristae, abnormal vesicles, reduction of ribosomes and the endoplasmic reticulum (ER) surround the mitochondria appeared. The MP subsequent after warm ischemia alleviate the abnormal vesicles and reduction of ribosomes in LSEC, which indicated the reduction of the ER damage. However, MMP could restore the tubular mitochondrial cristae, while after HMP the condensed and narrow mitochondrial cristae remained. In addition, the volume of the sinusoidal space in the liver grafts after MMP were restored, which indicated a lower risk of pressure injury than HMP. CONCLUSION: MMP alleviates the ER damage of LSEC by warm ischemia, additionally restore the metabolism of LSEC via the normalization of mitochondria and prevent the share stress damage of liver grafts.


Subject(s)
Organ Preservation Solutions , Organ Preservation , Animals , Humans , Death , Endothelial Cells , Liver/metabolism , Organ Preservation/methods , Organ Preservation Solutions/pharmacology , Perfusion/methods , Swine
4.
PLoS One ; 13(11): e0207593, 2018.
Article in English | MEDLINE | ID: mdl-30458011

ABSTRACT

Mesenchymal stem cells (MSCs) can influence the tumour microenvironment (TEM) and play a major role in tumourigenesis. Triple-negative [Ostrogen receptor (ER-), Progesterone receptor (PgR-), and HER2/neu receptor (HER2-)] breast cancer (TNBC) is an aggressive class of BC characterized by poor prognosis and lacks the benefit of routinely available targeted therapies. This study aims to investigate the effect of human placental chorionic villi derived MSCs (CVMSCs) on the behavior of TNBC in vitro. This was done by assaying different cancer hallmarks including proliferation, migration and angiogenesis. Cell proliferation rate of TNBC cell line (MDA-MB231) was monitored in real time using the xCELLigence system. Whereas, Boyden chamber migration assay was used to measure MDA-MB231 motility and invasiveness toward CVMSCs. Finally, a three-dimensional (3D) model using a co-culture system of CVMSCs with MDA-MB231 with or without the addition of human umbilical vein endothelial cells (HUVECs) was created to assess tumour angiogenesis in vitro. CVMSCs were able to significantly reduce the proliferative and migratory capacity of MDA-MB231 cells. Co-culturing of MDA-MB231 with CVMSCs, not only inhibited the tube formation ability of HUVECs but also reduced the expression of the BC characteristic cytokines; IL-10, IL-12, CXCL9 and CXCL10 of CVMSCs. These results support the hypothesis that CVMSCs can influence the behavior of TNBC cells and provides a basic for a potential therapeutic approach in a pre-clinical settings. The data from this study also highlight the complexity of the in vitro cancer angiogenesis model settings and regulations.


Subject(s)
Chorionic Villi/metabolism , Cytokines/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Mesenchymal Stem Cells/cytology , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Coculture Techniques , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Humans , Mesenchymal Stem Cells/metabolism , Pregnancy
5.
PLoS One ; 12(8): e0184004, 2017.
Article in English | MEDLINE | ID: mdl-28850615

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is considered the 3rd leading cause of death by cancer worldwide with the majority of patients were diagnosed in the late stages. Currently, there is no effective therapy. The selection of an animal model that mimics human cancer is essential for the identification of prognostic/predictive markers, candidate genes underlying cancer induction and the examination of factors that may influence the response of cancers to therapeutic agents and regimens. In this study, we developed a HCC nude rat models using cell sheet and examined the effect of human stromal cells (SCs) on the development of the HCC model and on different liver parameters such as albumin and urea. METHODS: Transplanted cell sheet for HCC rat models was fabricated using thermo-responsive culture dishes. The effect of human umbilical cord mesenchymal stromal cells (UC-MSCs) and human bone marrow mesenchymal stromal cells (BM-MSCs) on the developed tumour was tested. Furthermore, development of tumour and detection of the liver parameter was studied. Additionally, angiogenesis assay was performed using Matrigel. RESULTS: HepG2 cells requires five days to form a complete cell sheet while HepG2 co-cultured with UC-MSCs or BM-MSCs took only three days. The tumour developed within 4 weeks after transplantation of the HCC sheet on the liver of nude rats. Both UC-MSCs and BM-MSCs improved the secretion of liver parameters by increasing the secretion of albumin and urea. Comparatively, the UC-MSCs were more effective than BM-MSCs, but unlike BM-MSCs, UC-MSCs prevented liver tumour formation and the tube formation of HCC. CONCLUSIONS: Since this is a novel study to induce liver tumour in rats using hepatocellular carcinoma sheet and stromal cells, the data obtained suggest that cell sheet is a fast and easy technique to develop HCC models as well as UC-MSCs have therapeutic potential for liver diseases. Additionally, the data procured indicates that stromal cells enhanced the fabrication of HepG2 cell sheets. This provides the foundation for future research using stromal cells in preclinical and clinical investigations.


Subject(s)
Bone Marrow Cells/cytology , Carcinogenesis/pathology , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Umbilical Cord/cytology , Animals , Disease Models, Animal , Humans , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...