Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 13: 877149, 2022.
Article in English | MEDLINE | ID: mdl-35898905

ABSTRACT

Contagious ecthyma commonly known as Orf is a globally important, highly contagious zoonotic, transboundary disease that affects domestic and wild ruminants. The disease is of great economic significance causing an immense impact on animal health, welfare, productivity, and trade. Detailed analysis of the viral genome is crucial to further elucidate the molecular mechanism of Orf virus (ORFV) pathogenesis. In the present study, a confluent monolayer of lamb testicle cells was infected with the processed scab sample obtained from an infected goat. The presence of the virus was confirmed using polymerase chain reaction and electron microscopy, while its genome was sequenced using next-generation sequencing technology. The genome sequence of Malaysian ORFV strain UPM/HSN-20 was found to contain 132,124 bp with a G + C content of 63.7%. The homology analysis indicates that UPM/HSN-20 has a high level of identity 97.3-99.0% with the other reference ORFV strain. Phylogenetic analysis revealed that ORFV strain UPM/HSN-20 is genetically more closely related to ORFV strain XY and NP from China. The availability of the genome-wide analysis of ORFV UPM/HSN-20 strain from Malaysia will serve as a good platform for further understanding of genetic diversity, ORFV infection, and strategic development for control measures.

2.
Anim Health Res Rev ; 22(1): 40-55, 2021 06.
Article in English | MEDLINE | ID: mdl-34016216

ABSTRACT

Contagious ecthyma (CE) is an infectious disease of small ruminants caused by a parapoxvirus of family Poxviridae subfamily Chordopoxvirinae. The disease is obviously distinguished by an establishment of scabby lesions and ulcerative formation on less hairy areas including muzzle, ears, nostril, and sometimes on genitalia. The disease is endemic in sheep and goats. The virus is transmissible to other ruminants and is a public health concern in humans. Although the disease is known as self-limiting, it may cause a significant economic threat and financial losses due to lower productivity in livestock production. Information with regard to the risk of the disease and epidemiology in most parts of the world is underreported. This paper aims to provide relevant information about the epidemiology of CE in selected regions of Europe, South America, North America, Asia, Africa, and Australia. An in-depth comprehension of virus infection, diagnoses, and management of the disease will enable farmers, researchers, veterinarians, abattoir workers, health personnel, and border controllers to improve their measures, skills, and effectiveness toward disease prevention and control, toward reducing unnecessary economic loss among farmers. A herd health program for significant improvement in management and productivity of livestock demands a well planned extension program that ought to encourage farmers to equip themselves with adequate skills for animal healthcare.


Subject(s)
Ecthyma, Contagious , Goat Diseases , Orf virus , Sheep Diseases , Animals , Goats , Humans , Ruminants , Sheep
3.
Infect Genet Evol ; 90: 104783, 2021 06.
Article in English | MEDLINE | ID: mdl-33640483

ABSTRACT

OBJECTIVE: This study investigated the suitability of siRNA targeting specific genes that cause inhibition of virus replication in vitro especially for the virus that capable of crossing placenta and we employed a novel transplacental rat cytomegalovirus that mimics infection in human. METHODS: Six unique siRNAs with three each targeting different regions of IE2 (ie2a, ie2b and ie2c) and DNA polymerase (dpa, dpb and dpc) were prepared and tested for antiviral activities. The efficacy as an antiviral was determined in in-vitro by measuring TCID50 virus titer, severity of virus-induced cytopathic effect (CPE), intracellular viral genome loads by droplet digital PCR, the degree of apoptosis in siRNA-treated cells and relative expression of viral mRNA in infected Rat Embryo Fibroblast (REF) cells. FINDINGS: Remarkably, the siRNAs: dpa, dpb and IE2b, significantly reduced virus yield (approximately >90%) compared to control group at day 18 post infection (p.i). Changes in CPE indicated that DNA polymerase siRNAs were capable of protecting cells against CMV infection at day 14 p.i with higher efficiency than GCV (at the concentration of 300 pmol). Gene expression analysis revealed a marked down regulation of the targeted DNA polymerase gene (73.9%, 96.0% and 90.7% for dpa, dpb and dpc siRNA, respectively) and IE2 gene (50.8%, 49.9% and 15.8% for ie2a, ie2b and ie2c siRNA, respectively) when measured by RT-qPCR. Intracellular viral DNA loads showed a significant reduction for all the DNA polymerase siRNAs (dpa: 96%, dpb: 98% and dpc:92) compared to control group (P < 0.05). CONCLUSION: In conclusion, this study clearly highlighted the feasibility of RNAi as an alternative antiviral therapy that could lead to controlling the CMV infection.


Subject(s)
Antiviral Agents/pharmacology , Cytomegalovirus Infections/virology , Immediate-Early Proteins/pharmacology , Muromegalovirus/physiology , RNA, Small Interfering/pharmacology , Virus Replication , Animals , Cytomegalovirus Infections/drug therapy , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/pharmacology , Immediate-Early Proteins/genetics , RNA, Small Interfering/genetics , Rats
4.
Virol J ; 17(1): 164, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33109247

ABSTRACT

BACKGROUND: Cytomegalovirus (CMV) is an opportunistic pathogen that causes severe complications in congenitally infected newborns and non-immunocompetent individuals. Developing an effective vaccine is a major public health priority and current drugs are fronting resistance and side effects on recipients. In the present study, with the aim of exploring new strategies to counteract CMV replication, several anti-CMV siRNAs targeting IE2 and DNA polymerase gene regions were characterized and used as in combinations for antiviral therapy. METHODS: The rat embryo fibroblast (REF) cells were transfected with multi siRNA before infecting with CMV strain ALL-03. Viral growth inhibition was measured by tissue culture infectious dose (TCID50), cytopathic effect (CPE) and droplet digital PCR (ddPCR) while IE2 and DNA polymerase gene knockdown was determined by real-time PCR. Ganciclovir was deployed as a control to benchmark the efficacy of antiviral activities of respective individual siRNAs. RESULTS: There was no significant cytotoxicity encountered for all the combinations of siRNAs on REF cells analyzed by MTT colorimetric assay (P > 0.05). Cytopathic effects (CPE) in cells infected by RCMV ALL-03 had developed significantly less and at much slower rate compared to control group. The expression of targeted genes was downregulated successfully resulted in significant reduction (P < 0.05) of viral mRNA and DNA copies (dpb + dpc: 79%, 68%; dpb + ie2b: 68%, 60%; dpb + dpc + ie2b: 48%, 42%). Flow cytometry analysis showed a greater percentage of viable and early apoptosis of combined siRNAs-treated cells compared to control group. Notably, the siRNAs targeting gene regions were sequenced and mutations were not encountered, thereby avoiding the formation of mutant with potential resistant viruses. CONCLUSIONS: In conclusion. The study demonstrated a tremendous promise of innovative approach with the deployment of combined siRNAs targeting at several genes simultaneously with the aim to control CMV replication in host cells.


Subject(s)
DNA-Directed DNA Polymerase/genetics , Down-Regulation , Gene Targeting , Immediate-Early Proteins/genetics , Muromegalovirus/genetics , RNA, Small Interfering/genetics , Viral Proteins/genetics , Animals , Cell Line , Cytopathogenic Effect, Viral , Fibroblasts/virology , Gene Expression Regulation, Viral , Rats , Transfection , Virus Replication/genetics
5.
Infect Genet Evol ; 77: 104076, 2020 01.
Article in English | MEDLINE | ID: mdl-31678648

ABSTRACT

There is a little information on the characterization of Orf virus strains that are endemic in Malaysia. The relationship between the severity of disease and the molecular genetic profile of Orf virus strains has not been fully elucidated. This study documented the first confirmed report of contagious ecthyma causing by Orf virus in goats from a selected state of eastern peninsular Malaysia. The disease causes significant debilitation due to the inability of affected animals to suckle which brings a great economic loss to the farmers. A total of 504 animals were examined individually to recognize the affected animals with Orf lesion. Skin scrapping was used to collect the scab material from the infected animals. The presence of Orf virus was confirmed by combination of methods including virus isolation on vero cells, identification by Transmission Electron Microscopy (TEM) and molecular technique using PCR and Sanger sequencing. The results showed the successful isolation of four Orf virus strains with a typical cytopathic effects on the cultured vero cells line. The morphology was confirmed to be Orf virus with a distinctive ovoid and criss cross structure. The phylogenetic analysis revealed that these isolated strains were closely related to each other and to other previously isolated Malaysian orf viruses. In addition these Orf virus strains were closely related to Orf viruses from China and India. This study provides more valuable insight in terms of genotype of Orf virus circulating in Malaysia.


Subject(s)
Ecthyma, Contagious/diagnosis , Goat Diseases/virology , Orf virus/classification , Sheep Diseases/virology , Viral Proteins/genetics , Animals , Chlorocebus aethiops , Genetic Variation , Goats , Malaysia , Microscopy, Electron, Transmission , Orf virus/genetics , Orf virus/metabolism , Phylogeny , Sequence Analysis, DNA , Sheep , Vero Cells
6.
Microb Pathog ; 120: 55-63, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29709684

ABSTRACT

Orf disease is known to be enzootic among small ruminants in Asia, Africa, and some other parts of the world. The disease caused by orf virus is highly contagious among small ruminant species. Unfortunately, it has been neglected for decades because of the general belief that it only causes a self-limiting disease. On the other hand, in the past it has been reported to cause huge cumulative financial losses in livestock farming. Orf disease is characterized by localized proliferative and persistent skin nodule lesions that can be classified into three forms: generalized, labial and mammary or genitals. It can manifest as benign or malignant types. The later type of orf can remain persistent, often fatal and usually causes a serious outbreak among small ruminant population. Morbidity and mortality rates of orf are higher especially in newly infected kids and lambs. Application of antibiotics together with antipyretic and/or analgesic is highly recommended as a supportive disease management strategy for prevention of subsequent secondary microbial invasion. The presence of various exotic orf virus strains of different origin has been reported in many countries mostly due to poorly controlled cross-border virus transmission. There have been several efforts to develop orf virus vaccines and it was with variable success. The use of conventional vaccines to control orf is a debatable topic due to the concern of short term immunity development. Following re-infection in previously vaccinated animals, it is uncommon to observe the farms involved to experience rapid virus spread and disease outbreak. Meanwhile, cases of zoonosis from infected animals to animal handler are not uncommon. Despite failures to contain the spread of orf virus by the use of conventional vaccines, vaccination of animals with live orf virus is still considered as one of the best choice. The review herein described pertinent issues with regard to the development and use of potential effective vaccines as a control measure against orf virus infection.


Subject(s)
Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/veterinary , Disease Outbreaks/prevention & control , Ecthyma, Contagious/prevention & control , Orf virus/pathogenicity , Vaccination/veterinary , Viral Vaccines , Animals , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Disease Outbreaks/veterinary , Ecthyma, Contagious/epidemiology , Ecthyma, Contagious/immunology , Ecthyma, Contagious/virology , Orf virus/genetics , Ruminants , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/prevention & control , Sheep Diseases/virology , Sheep, Domestic , Virulence/genetics , Virulence Factors/genetics , Virulence Factors/immunology , Zoonoses/epidemiology , Zoonoses/prevention & control , Zoonoses/virology
7.
Vet World ; 10(7): 779-785, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28831222

ABSTRACT

AIM: The objective of this research is to report parameters for breeding soundness evaluation, semen extension, and cryopreservation in Rusa timorensis. MATERIALS AND METHODS: Seven healthy stags were chosen for semen collection using an electroejaculator. The collections were performed twice in a breeding season between February and June 2016. Samples were collected between 2 and 3 weeks interval, collected twice for each animal. Semen was evaluated, extended, and cryopreserved using four different extenders; Andromed®, BioXcell®, Triladyl®, and a modified Tris-egg yolk combined with Eurycoma longifolia Jack. RESULTS: R. timorensis semen characteristics according to volume (ml), color, sperm concentration (106/ml), general motility (%), progressive motility (%), and % morphology of normal spermatozoa are 0.86±0.18 ml, thin milky to milky, 1194.2±346.1 106/ml, 82.9±2.8%, 76.1±4.8%, and 83.9±4.8%, respectively. CONCLUSION: Semen characteristics of R. timorensis collected by electroejaculation is good allowing for cryopreservation and future artificial insemination work. The most suitable extender for Rusa deer semen is Andromed®.

8.
Infect Genet Evol ; 54: 81-90, 2017 10.
Article in English | MEDLINE | ID: mdl-28642159

ABSTRACT

BACKGROUND: Rat cytomegalovirus ALL-03 (Malaysian strain) which was isolated from a placenta and uterus of a house rat, Rattus rattus diardii has the ability to cross the placenta and infecting the fetus. To further elucidate the pathogenesis of the Malaysian strain of Rat Cytomegalovirus ALL-03 (RCMV ALL-03), detailed analysis on the viral genome sequence is crucial. METHODS: Genome sequencing of RCMV ALL-03 was carried out in order to identify the open reading frame (ORF), homology comparison of ORF with other strains of CMV, phylogenetic analysis, classifying ORF with its corresponding conserved genes, and determination of functional proteins and grouping of gene families in order to obtain fundamental knowledge of the genome. RESULTS: The present study revealed a total of 123 Coding DNA sequences (CDS) from RCMV ALL-03 with 37 conserved ORF domains as with all herpesvirus genomes. All the CDS possess similar function with RCMV-England followed by RCMV-Berlin, RCMV-Maastricht, and Human CMV. The phylogenetic analysis of RCMV ALL-03 based on conserving genes of herpes virus showed that the Malaysian RCMV isolate is closest to RCMV-English and RCMV-Berlin strains, with 99% and 97% homology, respectively. Similarly, it also demonstrated an evolutionary relationship between RCMV ALL-03 and other strains of herpesviruses from all the three subfamilies. Interestingly, betaherpesvirus subfamily, which has been shown to be more closely related with gammaherpesviruses as compared to alphaherpesviruses, shares some of the functional ORFs. In addition, the arrangement of gene blocks for RCMV ALL-03, which was conserved among herpesvirus family members was also observed in the RCMV ALL-03 genome. CONCLUSION: Genomic analysis of RCMV ALL-03 provided an overall picture of the whole genome organization and it served as a good platform for further understanding on the divergence in the family of Herpesviridae.


Subject(s)
Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Muromegalovirus/genetics , Open Reading Frames/genetics , Animals , Cell Line , DNA, Viral/genetics , Muromegalovirus/classification , Phylogeny , Rats , Sequence Analysis, DNA , Viral Proteins/genetics
9.
Genome Announc ; 3(3)2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26044413

ABSTRACT

The complete genome sequence of the ALL-03 strain of rat cytomegalovirus (RCMV) has been determined. The RCMV genome has a length of 197,958 bp and is arranged as a single unique sequence flanked by 504-bp terminal direct repeats. This strain is closely related to the English strain of RCMV in terms of genetic arrangement but differs slightly in size.

10.
In Vitro Cell Dev Biol Anim ; 49(3): 238-44, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23435855

ABSTRACT

Endothelial cells have been implicated as key cells in promoting the pathogenesis and spread of cytomegalovirus (CMV) infection. This study describes the isolation and culture of rat brain endothelial cells (RBEC) and further evaluates the infectious potential of a Malaysian rat CMV (RCMV ALL-03) in these cultured cells. Brain tissues were mechanically fragmented, exposed to enzymatic digestion, purified by gradient density centrifugation, and cultured in vitro. Morphological characteristics and expression of von Willebrand factor (factor VIII-related antigen) verified the cells were of endothelial origin. RBEC were found to be permissive to the virus by cytopathic effects with detectable plaques formed within 7 d of infection. This was confirmed by electron microscopy examination which proved the existence of the viral particles in the infected cells. The susceptibility of the virus to these target cells under the experimental conditions described in this report provides a platform for developing a cell-culture-based experimental model for studies of RCMV pathogenesis and allows stimulation of further studies on host cell responses imposed by congenital viral infections.


Subject(s)
Endothelial Cells/metabolism , Muromegalovirus/isolation & purification , Animals , Brain/metabolism , Brain/pathology , Brain/virology , Cytomegalovirus Infections/metabolism , Cytomegalovirus Infections/pathology , Cytomegalovirus Infections/virology , Cytopathogenic Effect, Viral , Disease Susceptibility , Endothelial Cells/pathology , Endothelial Cells/virology , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Endothelium, Vascular/virology , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/virology , Muromegalovirus/metabolism , Muromegalovirus/pathogenicity , Rats , von Willebrand Factor/metabolism
11.
Tropical Biomedicine ; : 121-34, 2004.
Article in Ml | WPRIM (Western Pacific) | ID: wpr-629829

ABSTRACT

Pseudorabies (Aujeszky's disease) is an economically significant disease of swine known to cause central nervous disorders, respiratory disease, reproductive failure and mortality in infected pigs. In attempts to eradicate the disease from becoming endemic, early detection is important to prevent further economic losses and to allow for detection and removal of infected pigs in domestic herds. Thus, a rapid and sensitive technique is necessary for the detection of the virus. For rapid and simple examination, an immuno - chromatographic lateral - flow assay system based on immunologic recognition of specific pseudorabies virus antigen was developed by utilising, as signal generator, colloidal gold conjugated to secondary antibody to detect primary or sample antibody in the sera of pseudorabies infected animals. The pseudorabies virus used as a capture antigen in the test strip was first cultivated in VERO cell culture and then purified by sucrose gradient separation to produce the viral protein concentration of 3.8 mg/ml. The standard pseudorabies antigens reacted well with the hyperimmune serum (HIS). The antibody detection system is basically composed of colloidal gold - labelled antibodies fixed on a conjugate pad, and the complementary pseudorabies antigen immobilised onto a nitrocellulose membrane forming capture zone. If the target antibody is present in a specimen, the colloidal gold-labelled antibody will form a complex with the antibody sample. Subsequently, the formed complex will migrate to the capture zone and is then bound to the solid phase via antigen - antibody interaction. As a result, a signal marker is generated by the accumulation of colloidal gold for detection confirmation. The results obtained demonstrated that the optimum combination of pseudorabies antigen needed as the capture reagent and gold conjugate as secondary antibody recognition marker was at a concentration of 0.38mg/ml and at 1:10 dilution factor respectively. The sensitivity of the solid - based test strip towards pseudorabies antibodies was high with a detection limit of 1 to 10,000 - dilution factor. The specificity of the assay was 100% with no cross - reaction being observed with other sera or antibodies. Accurate reading time needed for confirmation of the assay can be completed in 5 min with a whole blood sample of 25 microl. The colloidal gold - labelled antibody is stable at room temperature for 6 months or more (data not shown). Findings from this study indicated that the solid - based test strip assay system provided high sensitivity and specificity for the detection of pseudorabies at low levels of antibody concentration. The assay was rapid, simple, cheap, and does not require any sophisticated equipment. Thus, the solid based test strip will be a useful serological screening technique or for rapid diagnosis of an infectious disease in target populations of animals characterised by heterogeneous antibody responses.


Subject(s)
Antibodies , Antigens
SELECTION OF CITATIONS
SEARCH DETAIL
...