Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38399011

ABSTRACT

This paper reports on noise modeling of a piezoelectric charge accelerometer with a signal conditioning circuit. The charge output is converted into voltage and amplified using a JFET operational amplifier that has high input resistance and low noise. The noise sources in the whole system include electrical and mechanical thermal noises of the accelerometer, thermal noises of resistors, and voltage and current noises of the operational amplifier. Noise gain of each source is derived from small signal circuit analysis. It is found that the feedback resistor of the operational amplifier is a major source of noise in low frequencies, whereas electrical thermal noise of the accelerometer dominates the rest of spectrum. This method can be used to pair a highly sensitive sensor with a single JFET operational amplifier instead of a multi-stage signal conditioning circuit.

2.
Micromachines (Basel) ; 12(9)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34577744

ABSTRACT

In this study, 550 nm thick cubic silicon carbide square diaphragms were back etched from Si substrate. Then, indentation was carried out to samples with varying dimensions, indentation locations, and loads. The influence of three parameters is documented by analyzing load-displacement curves. It was found that diaphragms with bigger area, indented at the edge, and low load demonstrated almost elastic behaviour. Furthermore, two samples burst and one of them displayed pop-in behaviour, which we determine is due to plastic deformation. Based on optimum dimension and load, we calculate maximum pressure for elastic diaphragms. This pressure is sufficient for cubic silicon carbide diaphragms to be used as acoustic sensors to detect poisonous gasses.

3.
Sensors (Basel) ; 21(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671582

ABSTRACT

This perspective explores future research approaches on the use of noise characteristics of microelectromechanical systems (MEMS) devices as a diagnostic tool to assess their quality and reliability. Such a technique has been applied to electronic devices. In comparison to these, however, MEMS have much more diverse materials, structures, and transduction mechanisms. Correspondingly, we must deal with various types of noise sources and a means to separate their contributions. In this paper, we first provide an overview of reliability and noise in MEMS and then suggest a framework to link noise data of specific devices to their quality or reliability. After this, we analyze 13 classes of MEMS and recommend four that are most amenable to this approach. Finally, we propose a noise measurement system to separate the contribution of electrical and mechanical noise sources. Through this perspective, our hope is for current and future designers of MEMS to see the potential benefits of noise in their devices.

4.
Micromachines (Basel) ; 11(10)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076268

ABSTRACT

We present the design of a power management integrated circuit that processes harvested energy from radio frequency waves and piezoelectric vibrations. The rectification of piezoelectric and RF sources has a power conversion efficiency (PCE) of 87.73% and 74.70%, respectively. The asynchronous and microcontroller-less integrated circuit (IC) is designed to be low power, so the bulk of the harvested energy goes to three loads. The output peak powers of 111 µW, 156 µW, and 128 µW will be sufficient to run small devices for RF communication systems.

5.
Micromachines (Basel) ; 11(5)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397340

ABSTRACT

This review collates around 100 papers that developed micro-electro-mechanical system (MEMS) capacitive microphones. As far as we know, this is the first comprehensive archive from academia on this versatile device from 1989 to 2019. These works are tabulated in term of intended application, fabrication method, material, dimension, and performances. This is followed by discussions on diaphragm, backplate and chamber, and performance parameters. This review is beneficial for those who are interested with the evolutions of this acoustic sensor.

6.
Sensors (Basel) ; 18(6)2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29857584

ABSTRACT

We present the mixing and merging of two reactive droplets on top of an open surface. A mobile droplet (1.0 M HCl solution + iron oxide particles) is magnetically-actuated to merge with a sessile droplet (1.0 M NaOH + phenolphthalein). The heat from the exothermic reaction is detected by a thermocouple. We vary the droplet volume (1, 5 and 10 µL), the magnet speed (1.86, 2.79, 3.72 and 4.65 mm/s) and the iron oxide concentration (0.010, 0.020 and 0.040 g/mL) to study their influences on the mixing time, peak temperature and cooling time. The sampled recording of these processes are provided as supplementary files. We observe the following trends. First, the lower volume of droplet and higher speed of magnet lead to shorter mixing time. Second, the peak temperature increases and cooling time decreases at the increasing speed of magnet. Third, the peak temperature is similar for bigger droplets, and they take longer to cool down. Finally, we also discuss the limitations of this preliminary study and propose improvements. These observations could be used to improve the sensitivity of the open chamber system in measuring the exothermic reaction of biological samples.

7.
Sensors (Basel) ; 18(6)2018 Jun 02.
Article in English | MEDLINE | ID: mdl-29865261

ABSTRACT

We summarize the recipes and describe the role of sputtering parameters in producing highly c-axis Aluminum Nitride (AlN) films for piezoelectric applications. The information is collated from the analysis of around 80 journal articles that sputtered this film on variety of substrate materials, processes and equipment. This review will be a good starting point to catch up with the state-of-the-arts research on the reactive sputtering of AlN (002) thin film, as well as its evolving list of piezoelectric applications such as energy harvesters.

8.
Lab Chip ; 16(12): 2211-8, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27191398

ABSTRACT

Controlled actuation of a floating liquid marble, a liquid droplet coated with hydrophobic particles floating on another liquid surface, is a potential digital microfluidics platform for the transport of aqueous solution with minimal volume loss. This paper reports our recent investigation on the magnetic actuation of floating liquid marbles filled with magnetic particles. The magnetic force and frictional force acting on the floating liquid marble determine the horizontal movement of the marble. We varied the magnetic flux density, flux density gradient, concentration of magnetic particles and speed of the marble to elucidate the relationship between the acting forces. We subsequently determined the suitable operating conditions for the actuation and derived the scaling laws for the actuation parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...